精英家教网 > 初中数学 > 题目详情
15、已知关于x的一元二次方程x2+(4m+1)x+2m-1=0.
求证:不论m为任何实数,方程总有两个不相等的实数根.
分析:要证明方程总有两个不相等的实数根,那么只要证明△>0即可.
解答:证明:△=(4m+1)2-4(2m-1)
=16m2+8m+1-8m+4=16m2+5>0,
∴不论m为任何实数,方程总有两个不相等的实数根.
点评:熟练掌握一元二次方程的根的情况与判别式△的符号的关系,把求未知系数的范围的问题转化为解不等式的问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案