精英家教网 > 初中数学 > 题目详情

【题目】如图,AB是⊙O的直径,点D在⊙O,OCAD交⊙OE, FCD延长线上, 且∠BOC+ADF=90°.

1)求证:;

2)求证:CD是⊙O的切线.

【答案】(1)见解析;(2)见解析

【解析】

1)证明弧相等可转化为证明弧所对的圆心角相等,即证明∠BOC=COD即可;
2)由(1)可得∠BOC=OAD,∠OAD=ODA,再由已知条件证明∠ODF=90°即可.

证明:(1)连接OD


ADOC
∴∠BOC=OAD,∠COD=ODA
OA=OD
∴∠OAD=ODA
∴∠BOC=COD

2)由(1)∠BOC=OAD,∠OAD=ODA
∴∠BOC=ODA
∵∠BOC+ADF=90°
∴∠ODA+ADF=90°
即∠ODF=90°
OD是⊙O的半径,
CD是⊙O的切线.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】中,,过点作直线,将绕点顺时针旋转得到(点的对应点分别为),射线分别交直线于点

1)如图1,当重合时,求的度数;

2)如图2,设的交点为,当的中点时,求线段的长;

3)在旋转过程中,当点分别在的延长线上时,试探究四边形的面积是否存在最小值.若存在,求出四边形的最小面积;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是O的直径,AC平分DAB交O于点C,过点C的直线垂直于AD交AB的延长线于点P,弦CE交AB于点F,连接BE.

(1)求证:PD是O的切线;

(2)若PC=PF,试证明CE平分∠ACB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0).

(1)求该抛物线所对应的函数解析式;

(2)如图2,该抛物线与y轴交于点C,顶点为F,点D(2,3)在该抛物线上.

①求四边形ACFD的面积;

②点P是线段AB上的动点(点P不与点A、B重合),过点P作PQ⊥x轴交该抛物线于点Q,连接AQ、DQ,当△AQD是直角三角形时,求出所有满足条件的点Q的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,以正方形ABCDAB边为直径作半圆O,过点C作直线切半圆于点E,交AD边于点F,则sinFCD=(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校为了解本校九年级学生物理实验操作技能考查的备考情况,随机抽取该年级部分学生进行了一次测试,并根据中考标准按测试成绩分成ABCD四个等级,绘制出以下两幅不完整的统计图,请根据图中信息解答下列问题:

(1)本次抽取参加测试的学生为_____人,扇形统计图中A等级所对的圆心角是____度;

(2)请补全条形统计图和扇形统计图;

(3)若该校九年级男生有300人,请估计该校九年级学生物理实验操作成绩为C等级的有____人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,∠B=60°,对角线AC平分角∠BAD,点P是△ABC内一点,连接PA、PB、PC,若PA=6,PB=8,PC=10,则菱形ABCD的面积等于_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图 1 是台湾某品牌手工蛋卷的外包装盒,其截面图如图 2 所示,盒子上方是一段圆弧(弧 MN .DE 为手提带的固定点, DE 与弧MN 所在的圆相切,DE=2.手提带自然下垂时,最低点为C,且呈抛物线形,抛物线与弧MN 交于点 FG.CDE 是等腰直角三角形,且点 CF 到盒子底部 AB 的距离分别为 1 ,则弧MN 所在的圆的半径为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2:

(1)求反比例函数的表达式;

(2)将直线l1:y=﹣x向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.

查看答案和解析>>

同步练习册答案