精英家教网 > 初中数学 > 题目详情

【题目】小明是个爱动脑筋的同学,在发现教材中的用方框在日历中移动的规律后,突发奇想,将连续的得数2468,排成如图形式:并用一个十字形框架框住其中的五个数,请你仔细观察十字形框架中的数字的规律,并回答下列问题:

1)请你选择十字框中你喜欢的任意位置的一个数,将其设为x,并用含x的代数式表示十字框中五个数的和.

2)若将十字框上下左右移动,可框住另外的五个数,试间:十字框能否框住和等于2015的五个数,如能,请求出这五个数;如不能,说明理由.

【答案】15x;(2)不能,理由见解析

【解析】

1)设十字框中中间的数为x,则另外四个数分别为x10x2x+2x+10,将五个数相加即可得出结论;

2)由五个数之和为2015,可得出关于x的一元一次方程,解之即可得出x的值,由该值不为偶数可得出十字框不能框住和等于2015的五个数.

解:(1)设十字框中中间的数为x,则另外四个数分别为x10x2x+2x+10

十字框中五个数的和=(x10+x2+x+x+2+x+10)=5x

2)不能,理由如下:

依题意,得:5x2015

解得:x403

图中各数均为偶数,

x403不符合题意,

十字框不能框住和等于2015的五个数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某校计划把一块近似于直角三角形的废地开发为生物园如图所示,∠ACB=90°,BC=60,∠A=36°.

(1)若入口处EAB边上且与AB等距离CE的长精确到个位);

(2)D点在AB边上计划沿线段CD修一条水渠.已知水渠的造价为50/水渠路线应如何设计才能使造价最低求出最低造价

其中sin36°=0.5878,cos36°=0.8090,tan36°=0.7265)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD四个车站的位置如图所示:

(1)AD两站的距离;

(2)CD两站的距离;

(3)比较AC两站的距离与BD两站的距离,哪两站的距离更大?大多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠C=90°,以AC为直径作⊙O,交ABD,过点OOEAB,交BCE.

(1)求证:ED为⊙O的切线;

(2)如果⊙O的半径为,ED=2,延长EO交⊙OF,连接DF、AF,求ADF的面积.

【答案】(1)证明见解析;(2)

【解析】试题分析:(1)首先连接OD,由OEAB,根据平行线与等腰三角形的性质,易证得 即可得,则可证得的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得 利用勾股定理即可求得的长,又由OEAB,证得根据相似三角形的对应边成比例,即可求得的长,然后利用三角函数的知识,求得的长,然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

试题解析:(1)证明:连接OD

OEAB

∴∠COE=CADEOD=ODA

OA=OD,

∴∠OAD=ODA

∴∠COE=DOE

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切线;

(2)连接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB

∴△COE∽△CAB

AB=5,

AC是直径,

EFAB

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面积为

型】解答
束】
25

【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.

(1)求ba的关系式和抛物线的顶点D坐标(用a的代数式表示);

(2)直线与抛物线的另外一个交点记为N,求DMN的面积与a的关系式;

(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正五边形的边长为2,连接对角线AD、BE、CE,线段AD分别与BE和CE相交于点M、N,给出下列结论:①∠AME=108°,②AN2=AMAD;③MN=3-;④S△EBC=2-1,其中正确的结论是_________(把你认为正确结论的序号都填上).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】以直线AB上一点O为端点作射线 OC使BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠DOE=90°)

(1)如图1,若直角三角板DOE的一边OD放在射线OBCOE= °;

(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置OE恰好平分AOC请说明OD所在射线是BOC的平分线

(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时若恰好COD= AOEBOD的度数?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,抛物线y=ax2+bx-2与x轴的两个交点分别为A(1,0),B(4,0),与y轴的交点为C.

(1)求出抛物线的解析式及点C的坐标;

(2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国家环保局统一规定,空气质量分为5级:当空气污染指数达0—50时为1级,质量为优;51—100时为2级,质量为良;101—200时为3级,轻度污染;201—300时为4级,中度污染;300以上时为5级,重度污染.某城市随机抽取了2015年某些天的空气质量检测结果,并整理绘制成如下两幅不完整的统计图.请根据图中信息,解答下列各题:

(1) 本次调查共抽取了 天的空气质量检测结果进行统计;

(2) 补全条形统计图;

(3) 扇形统计图中3级空气质量所对应的圆心角为 °

(4) 如果空气污染达到中度污染或者以上,将不适宜进行户外活动,根据目前的统计,请你估计2015年该城市有多少天不适宜开展户外活动.(2015年共365)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形,点为对角线上一个动点,边上一点,且

(1)求证:

(2)若四边形的面积为25,试探求满足的数量关系式;

(3)若为射线上的点,设,四边形的周长为,且,求的函数关系式.

查看答案和解析>>

同步练习册答案