精英家教网 > 初中数学 > 题目详情
已知:正方形ABCD的边长为4,⊙O交正方形ABCD的对角线AC所在直线于点T,连接TO交⊙O于点S.

(1)如图1,当⊙O经过A、D两点且圆心O在正方形ABCD内部时,连接DT、DS.
①试判断线段DT、DS的数量关系和位置关系;
②求AS+AT的值;
(2)如图2,当⊙O经过A、D两点且圆心O在正方形ABCD外部时,连接DT、DS.求AS-AT的值;
(3)如图3,延长DA到点E,使AE=AD,当⊙O经过A、E两点时,连接ET、ES.根据(1)、(2)计算,通过观察、分析,对线段
AS、AT的数量关系提出问题并解答.
(1)①线段DT、DS的数量和位置关系分别是:DT=DS,DT⊥DS.理由如下:
∵AC为正方形ABCD的对角线,
∴∠TAD=45°,
∵TS为直径,
∴∠SDT=90°,
又∵∠TSD=∠TAD,
∴∠TSD=45°,
∴△DST为等腰直角三角形,
∴DT=DS,DT⊥DS;
②∵∠SDT=∠ADC=90°,
∴∠SDA=∠CDT,
又∵TS为直径,
∴∠SAT=90°,
∴∠SAD=45°,
∴∠SAD=∠DCT,
而DA=DC,
∴△DAS≌△DCT,
∴AS=TC,
∴AS+AT=AC,
而正方形ABCD的边长为4,
∴AC=4
2

∴AS+AT=4
2

(2)∵TS为直径,
∴∠SAT=90°,∠SDT=90°,
∴∠SAC=90°,
而∠CAD=45°,
∴∠SAD=45°,
∴∠STD=45°,
∴△DST为等腰直角三角形,
∴DS=DT,
又∵∠SAD=∠DCT=45°,∠ASD=∠DTC,
∴△DAS≌△DCT,
∴AS=TC,
∴AS-AT=TC-AT=AC=4
2

(3)提出的问题是:求AT-AS的值.解答如下:
在TA上截取TF=AS,连接EF,如图,
∵∠TAE=∠BAC=45°,
∴△EST为等腰直角三角形,
∴SE=TE,
又∵∠ASE=∠ETF,
在△EAS和△EFT中,
SA=TF
∠ASE=∠FTE
SE=TE

∴△EAS≌△EFT(SAS),
∴∠SEA=∠TEF,AE=EF,
而∠TES=90°,
∴∠AEF=90°,
∴△AEF为等腰直角三角形,
∴AF=
2
AE,
∵AE=AD=4,
∴AT-AS=AT-TF=AF=4
2
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,PA与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC=32°,则∠P的度数为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB=AC=10,BC=12,P是劣弧BC的中点,过点P作⊙O的切线交AB延长线于点D.
(1)求证:DPBC;
(2)求DP的长.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在△ABC中,∠C=120°,AC=BC,AB=6,O为AB的中点,且以O为圆心的半圆与AC,BC分别相切于点D,E;
(1)求半圆O的半径;
(2)求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在△ABC中,∠C=90°,点O在AB上,且AC,BC分别与圆O相切于点M、N,若AO=15厘米,OB=20厘米,则圆O的面积为______平方厘米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,Rt△ABC中,∠C=90°,∠ABC=30°,AB=6.点D在AB边上,点E是BC边上一点(不与点B、C重合),且DA=DE,则AD的取值范围是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知BC是⊙O的直径,AD切⊙O于A,若∠C=40°,则∠DAC=(  )
A.50°B.40°C.25°D.20°

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在以点O为圆心的两个同心圆中,大圆的半径OA与小圆相交于点B,AC与小圆相切于点C,OC的延长线与大圆相交于点D,AC与BD相交于点E.
求证:(1)BD是小圆的切线;
(2)CE:AE=OC:OD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,O是正方形ABCD的对角线BD上一点,⊙O与边AB,BC都相切,点E,F分别在AD,DC上,现将△DEF沿着EF对折,折痕EF与⊙O相切,此时点D恰好落在圆心O处.若DE=2,则正方形ABCD的边长是(  )
A.3B.4C.2+
2
D.2
2

查看答案和解析>>

同步练习册答案