精英家教网 > 初中数学 > 题目详情
精英家教网如图,已知:等边三角形ABC的边长为6,点D、E分别在边AB、AC上,且AD=AE=2.点F从点B开始以每秒1个单位长的速度沿射线BC方向运动,设点F运动的时间为t秒.当t>0时,直线FD与过点A且平行于BC的直线相交于点G,GE的延长线与BC的延长线相交于点H,AB与GH相交于点O.
(1)用t的代数式表示AG;
(2)设△AGE的面积为S,写出S与t的函数关系式;
(3)当t为何值时,点F和点C是线段BH的三等分点?
分析:(1)根据平行线AG∥BC截线段成比例证得△ADG∽△BDF,然后由相似三角形的对应边成比例知
AG
BF
=
AD
DB
,从而求得AG=
1
2
t;
(2)作辅助线EK⊥AG构造直角三角形AEK,然后在直角三角形中求EK的长度;
(3)需分类讨论:①当点F在线段BC上时,若点F、点C是线段BH的三等分点;②当点F在BC的延长线上时,若点F、点C是线段BH的三等分点.
解答:精英家教网解:(1)∵AG∥BC,
∴△ADG∽△BDF,
AG
BF
=
AD
DB

又∵AD=2,DB=4,BF=t,
AG=
1
2
t

(2)作EK⊥AG,垂足为K,
∵∠CAK=∠ACB=60°,
EK=AEsin60°=
3

S=
1
2
AG•EK=
3
4
t

(3)①当点F在线段BC上时,若点F、点C是线段BH的三等分点,
则BF=FC=CH,BC=6,BF=3,
即当t=3时,点F、点C是BH的三等分点;
②当点F在BC的延长线上时,若点F、点C是线段BH的三等分点,
则BC=CF=FH,CF=6,BF=12,
即当t=12时,点F、点C是BH的三等分点.
点评:本题综合考查了解直角三角形、等边三角形的性质、相似三角形的性质与判定.在解答第(3)题时,要分类讨论,以防漏解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.
(1)图中有几对三角三全等?试选取一对全等的三角形给予证明;
(2)判断△BEF的形状,并说明理由.
(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

.如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ。当点P运动到原点O处时,记Q得位置为B。

(1)求点B的坐标;

(2)求证:当点P在x轴上运动(P不与Q重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年山东胜利七中九年级中考二模数学试卷(解析版) 题型:解答题

如图,在平面直角坐标系中,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其一侧作等边三角线APQ.当点P运动到原点O处时,记Q的位置为B.

(1)求点B的坐标;

(2)求证:当点P在x轴上运动(P不与O重合)时,∠ABQ为定值;

(3)是否存在点P,使得以A、O、Q、B为顶点的四边形是梯形?若存在,请求出P点的坐标;若不存在,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.
(1)图中有几对三角三全等?试选取一对全等的三角形给予证明;
(2)判断△BEF的形状,并说明理由.
(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系.

查看答案和解析>>

科目:初中数学 来源:2012年安徽省中考数学模拟试卷(五)(解析版) 题型:解答题

如图,已知菱形ABCD的边长为2,∠DAB=60°,E、F分别是AD、CD上的两个动点,且满足AE+CF=2.连接BD.
(1)图中有几对三角三全等?试选取一对全等的三角形给予证明;
(2)判断△BEF的形状,并说明理由.
(3)当△BEF的面积取得最小值时,试判断此时EF与BD的位置关系.

查看答案和解析>>

同步练习册答案