精英家教网 > 初中数学 > 题目详情
1.甲、乙两位探险者今年到沙漠进行探险,没有了水,需要寻找水源,为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为12千米,早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

分析 先根据题意得出OA,OB的长,再由勾股定理即可得出结论.

解答 解:∵早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进,
∴上午10:00时,OA=8千米,OB=6千米,
∴AB=$\sqrt{{8}^{2}+{6}^{2}}$=10<12,
∴甲、乙二人相距10千米,还能保持联系.

点评 本题考查的是勾股定理的应用,熟记勾股定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图1,菱形ABCD中,已知∠BAD=120°,∠EGF=60°,∠EGF的顶点G在菱形对角线AC上运动,角的两边分别交边BC,CD于点E,F.
(1)如图2,当顶点G运动到与点A重合时,求证:EC+CF=BC;
(2)知识探究:①如图3,当顶点G运动到AC中点时,探究线段EC,CF与BC的数量关系;
②在顶点G的运动过程中,若$\frac{AC}{CG}$=t,请直接写出线段EC,CF与BC的数量关系(不需要写出证明过程);
(3)问题解决:如图4,已知菱形边长为8,BG=7,CF=$\frac{6}{5}$,当t>2时,求EC的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.若x2-y2=6,x+y=3,则x-y=2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.(1)计算:$\sqrt{27}$-(2017-π)0+(-$\frac{1}{2}$)-3-6tan30°
(2)已知关于x的一元二次方程x2-(m-3)x+$\frac{1}{4}$m2=0有实数根,求实数m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,在矩形ABCD中,AB=3,∠AOB=60°,则OC的长为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是(  )
A.2米B.2.5米C.2.4米D.2.1米

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

13.正如我们小学学过的圆锥体积公式V=$\frac{1}{3}$πr2h(π表示圆周率,r表示圆锥的底面半径,h表示圆锥的高)一样,许多几何量的计算都要用到π.祖冲之是世界上第一个把π计算到小数点后7位的中国古代科学家,创造了当时世界上的最高水平,差不多过了1000年,才有人把π计算得更精确.在辉煌成就的背后,我们来看看祖冲之付出了多少.现在的研究表明,仅仅就计算来讲,他至少要对9位数字反复进行130次以上的各种运算,包括开方在内.即使今天我们用纸笔来算,也绝不是一件轻松的事情,何况那时候没有现在的纸笔,数学计算不是用现在的阿拉伯数字,而是用算筹(小竹棍或小竹片)进行的,这需要怎样的细心和毅力啊!他这种严谨治学的态度,不怕复杂计算的毅力,值得我们学习.
下面我们就来通过计算解决问题:已知圆锥的侧面展开图是个半圆,若该圆锥的体积等于9$\sqrt{3}$π,则这个圆锥的高等于(  )
A.$5\sqrt{3}π$B.$5\sqrt{3}$C.$3\sqrt{3}π$D.$3\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列计算正确的是(  )
A.(-a)6÷a3=a3B.a2•a3=a6C.(2a44=16a8D.a+a2=2a3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,AB为⊙O的直径,D为$\widehat{AC}$的中点,连接OD交弦AC于点F,过点D作DE∥AC,交BA的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)连接CD,若OA=AE=4,求四边形ACDE的面积.

查看答案和解析>>

同步练习册答案