如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC=900,∠BCO=450,BC=,点C的坐标为(-18,0).
(1)求点B的坐标;
(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式.
解:(1)过点B作BF轴于F,
在中,∠BCO=45°,BC=,
∴CF=BF=12。
∵点C的坐标为(-18,0),∴AB=OF=18-12=6。
∴点B的坐标为。
(2)过点D作DG轴于点G,
∵AB∥DG,,∴。
∴。
∵AB=6,OA=12,∴DG=4,OG=8。
∴。
设直线DE的解析式为,将代入,得
,解得 。
∴直线DE解析式为。
解析试题分析:(1)如图所示,构造等腰直角三角形BCF,求出BF、CF的长度,即可求出B点坐标。
(2)已知E点坐标,欲求直线DE的解析式,需要求出D点的坐标.如图所示,证明△ODG∽△OBA,由线段比例关系求出D点坐标,从而应用待定系数法求出直线DE的解析式。
科目:初中数学 来源: 题型:解答题
点P(x,y)在第一象限,且x+y=10,点A的坐标为(8,0),设原点为O,△OPA的面积为S.
(1)求S与x的函数关系式,写出x的取值范围,画出这个函数图象;
(2)当S=12时,求点P的坐标;
(3)△OPA的面积能大于40吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
做服装生意的王老板经营甲、乙两个店铺,每个店铺在同一段时间内都能售出A,B两种款式的服装合计30件,并且每售出一件A款式和B款式服装,甲店铺获毛利润分别为30元和40元,乙店铺获毛利润分别为27元和36元。某日王老板进货A款式服装35件,B款式服装25件。怎样分配给每个店铺各30件服装,使得在保证乙店铺毛利润不小于950元的前提下,王老板获取的总毛利润最大?最大的总毛利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
已知一次函数的图象与反比例函数的图象相交,其中一个交点的纵坐标为6.
(1)求两个函数的解析式;
(2)若已知另一点的横坐标为,结合图象求出时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
某工程机械厂根据市场需求,计划生产A、B两种型号的大型挖掘机共100台,该厂所筹生产资金不少于22 400万元,但不超过22 500万元,且所筹资金全部用于生产此两型挖掘机,所生产的此两型挖掘机可全部售出,此两型挖掘机的生产成本和售价如下表:
型号 | A | B |
成本(万元/台) | 200 | 240 |
售价(万元/台) | 250 | 300 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
青海新闻网讯:西宁市为加大向国家环境保护模范城市大步迈进的步伐,积极推进城市绿地、主题公园、休闲场地建设.园林局利用甲种花卉和乙种花卉搭配成A、B两种园艺造型摆放在夏都大道两侧.搭配数量如下表所示:
| 甲种花卉(盆) | 乙种花卉(盆) |
A种园艺造型(个) | 盆 | 盆 |
B种园艺造型(个) | 盆 | 盆 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
莲城超市以10元/件的价格调进一批商品,根据前期销售情况,每天销售量y(件)与该商品定价x(元)是一次函数关系,如图所示.
(1)求销售量y与定价x之间的函数关系式;
(2)如果超市将该商品的销售价定为13元/件,不考虑其它因素,求超市每天销售这种商品所获得的利润.
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线BCD表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.请根据图象解答下列问题:
(1)轿车到达乙地后,货车距乙地多少千米?
(2)求线段CD对应的函数解析式.
(3)轿车到达乙地后,马上沿原路以CD段速度返回,求轿车从甲地出发后多长时间再与货车相遇(结果精确到0.01).
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
如图,已知双曲线经过点D(6,1),点C是双曲线第三象限分支上的动点,过C作CA⊥x轴,过D作DB⊥y轴,垂足分别为A,B,连接AB,BC.
(1)求k的值;
(2)若△BCD的面积为12,求直线CD的解析式;
(3)判断AB与CD的位置关系,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com