精英家教网 > 初中数学 > 题目详情
(2012•绵阳)点M(1,-2)关于原点对称的点的坐标是(  )
分析:根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.
解答:解:点M(1,-2)关于原点对称的点的坐标是(-1,2).
故选C.
点评:本题考查了关于原点的对称点的坐标的特点,熟记“关于原点对称的点的横坐标与纵坐标都互为相反数”是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•绵阳)如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,已知∠AP′B=135°,P′A:P′C=1:3,则P′A:PB=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)如图,AB∥CD,AD与BC交于点E,EF是∠BED的平分线,若∠1=30°,∠2=40°,则∠BEF=
35
35
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)如图,正方形ABCD中,E、F分别是边AD、CD上的点,DE=CF,AF与BE相交于O,DG⊥AF,垂足为G.
(1)求证:AF⊥BE;
(2)试探究线段AO、BO、GO的长度之间的数量关系;
(3)若GO:CF=4:5,试确定E点的位置.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•绵阳)如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+
1
6
x+c的图象F交x轴于B、C两点,交y轴于M点,其中B(-3,0),M(0,-1).已知AM=BC.
(1)求二次函数的解析式;
(2)证明:在抛物线F上存在点D,使A、B、C、D四点连接而成的四边形恰好是平行四边形,并请求出直线BD的解析式;
(3)在(2)的条件下,设直线l过D且分别交直线BA、BC于不同的P、Q两点,AC、BD相交于N.
①若直线l⊥BD,如图1,试求
1
BP
+
1
BQ
的值;
②若l为满足条件的任意直线.如图2.①中的结论还成立吗?若成立,证明你的猜想;若不成立,请举出反例.

查看答案和解析>>

同步练习册答案