如图,在平面直角坐标系中,顶点为(,)的抛物线交轴于点,交轴于,两点(点在点的左侧), 已知点坐标为(,).
(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点, 如果以点为圆心的圆与直线相切,请判断抛物线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于,两点之间,问:当点运动到什么位置时,的面积最大?并求出此时点的坐标和的最大面积.
(1)解:(1)设抛物线为.
∵抛物线经过点(0,3),∴.∴.
∴抛物线为. …………………3分
(2) 答:与⊙相交………………………1分
证明:当时,,.
∴为(2,0),为(6,0).∴.…………………1分
设⊙与相切于点,连接,则.
∵,∴.
又∵,∴.∴∽.……1分
∴.∴.∴.…………………………1分
∵抛物线的对称轴为,∴点到的距离为2.
∴抛物线的对称轴与⊙相交. ……………………………………………1分
(3) 解:如图,过点作平行于轴的直线交于点。
可求出的解析式为.…………………………………………1分
设点的坐标为(,),则点的坐标为(,). ∴.
∵,
∴当时,的面积最大为.
科目:初中数学 来源: 题型:
BD |
AB |
5 |
8 |
查看答案和解析>>
科目:初中数学 来源: 题型:
5 |
29 |
5 |
29 |
查看答案和解析>>
科目:初中数学 来源: 题型:
k |
x |
k |
x |
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com