分析 (1)利用非负数的性质求出b与c的值,根据多项式为五次四项式求出a的值;
(2)由题意只要求出点P遇到点M的时间,也就是点N的运动时间,首先求出AC的距离,设相遇时间为t,分别表示出两点行驶的距离,建立方程解决问题.
解答 解:(1)∵(b+2)2+(c-24)2=0,
∴b=-2,c=24,
∵多项式x|a+3|y2一ax3y+xy2-1是五次四项式,
∴|a+3|=5-2,-a≠0,
∴a=-6;
故答案是:-6;-2;24;
(2)AC=24-(-6)=30,
设经过t秒点P遇到点M,
则t+3t=30,
解得t=7.5,
点N所走的路程为7×7.5=52.5个单位长度,
答:点N所走的路程为52.5个单位长度.
点评 本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解;注意根据二次函数的性质利用公式法求最大值的理解掌握.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com