【题目】成都市某企业积极响应政府“创新发展”的号召,研发了一种新产品.已知研发、生产这种新产品的成本为30元/件,经市场调查发现,该产品的年销售量y(万件)与销售单价x(元)之间的函数关系如下图:
(1)求出y与x之间的函数关系式;
(2)当该产品的售价为多少时,该企业销售该产品获得的年利润最大?最大年利润是多少?(注:年利润=年销售量×(销售单价﹣成本单价))
【答案】(1)y=;(2)当该产品的售价为80元/件时,该企业销售该产品获得的年利润最大;最大年利润是1500万元.
【解析】
(1)当40≤x≤60时,当60≤x≤80时,分别利用待定系数法求函数解析式;
(2)设年利润为为w万元.当40≤x≤60时,当60≤x≤80时,列函数关系式.根据二次函数的性质即可得到结论.
解:(1)当40≤x≤60时,
设线段AB所在直线解析式为y=k1x+b1,
将A(40,80),B(60,40)代入有,
解之得,
∴y=﹣2x+160(40≤x≤60),
同理当60≤x≤80时,设线段BC所在直线解析式为y=k2x+b2
将B,C坐标代入可得
解得
∴ (60≤x≤80)
∴y与x之间的函数关系式为:y=;
(2)设年利润为为w万元.
当40≤x≤60时,w=(x﹣30)(﹣2x+160)=﹣(x﹣55)2+1250,
当x=55时,w最大=1250;
当60≤x≤80时,w=(x﹣30)(﹣x+70)=﹣(x﹣85)2+,
又60≤x≤80,∴当x=80时,w最大=1500,
∵1250<1500,
∴当该产品的售价为80元/件时,该企业销售该产品获得的年利润最大;最大年利润是1500万元.
科目:初中数学 来源: 题型:
【题目】某校为了解本校九年级学生足球训练情况,随机抽查该年级若干名学生进行测试,然后把测试结果分为4个等级:A、B、C、D,并将统计结果绘制成两幅不完整的统计图.请根据图中的信息解答下列问题:
(1)在这次调查中,一共调查了 名学生,扇形统计图中,C等级对应的扇形圆心角是 °.
(2)补全条形统计图.
(3)该年级共有900人,估计该年级足球测试成绩为D等的人数为 人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:
我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.
理解:
(1)如图1,已知Rt△ABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);
(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.
求证:BD是四边形ABCD的“相似对角线”;
(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若△EFG的面积为2,求FH的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AE⊥BD于E.
(1)若BC=BD,,AD=15,求△ABD的周长.
(2)若∠DBC=45°,对角线AC、BD交于点O,F为AE上一点,且AF=2EO,求证:CF=AB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣x+2的图象与x轴交于点A与反比例函数(x<0)的图象交于点B,过点B作BC⊥x轴于点C,且OA=OC.
(1)求点A的坐标和反比例函数的表达式;
(2)若点P是反比例函数(x<0)的图象上的点,过P作PQ∥y轴,交直线AB于点Q,当PQ=BC时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.
(1)求此抛物线的解析式;
(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;
(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若果∠1=∠2,那么添加下列任何一个条件:(1),(2),(3)∠B=∠D,(4)∠C=∠AED, 其中能判定△ABC∽△ADE的个数为
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知线段, 是上的一动点,是的中点,以为边作正方形,点关于射线的对称点为 ,连接、,直线交于点.
(1)如图1,当点在线段上,且,求的度数;
(2)小明在解题时发现:当点在线段上时,线段,,之间满足,那么你认为当点在线段上时(如图2),他的结论是否还成立?若成立,请证明,若不成立,请说明理由;
(3)如图3,点在上,且,当点从点运动到点时,直接写出点所经过的路径长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com