如图,在某小区的休闲广场有一个正方形花园ABCD,为了便于观赏,要在AD、BC之间修一条小路,在AB、DC之间修另一条小路,使这两条小路等长.设计师给出了以下几种设计方案:
①如图1,E是AD上一点,过A作BE的垂线,交BE于点O,交CD于点H,则线段AH、BE为等长的小路;
②如图2,E是AD上一点,过BE上一点O作BE的垂线,交AB于点G,交CD于点H,则线段GH、BE为等长的小路;
③如图3,过正方形ABCD内任意一点O作两条互相垂直的直线,分别交AD、BC于点E、F,交AB、CD于点G、H,则线段GH、EF为等长的小路;
根据以上设计方案,解答下列问题:
(1)你认为以上三种设计方案都符合要求吗?
(2)要根据图1完成证明,需要证明△ ≌△ ,进而得到线段 = ;
(3)如图4,在正方形ABCD外面已经有一条夹在直线AD、BC之间长为EF的小路,想在直线AB、DC之间修一条和EF等长的小路,并且使这条小路的延长线过EF上的点O,请画草图(加以论述),并给出详细的证明.
(1)符合要求
(2)ABE DAH BE AH
(3)见解析
【解析】
试题分析:(1)通过证明三角形全等,由全等三角形的对应边相等可以判断以上三种设计方案都符合要求;
(2)在图1中,先由正方形的性质得出∠BAE=∠ADH=90°,AB=AD,根据同角的余角相等得出∠ABE=∠DAH,再利用ASA证明△ABE≌△DAH,进而由全等三角形的对应边相等即可得出BE=AH;
(3)先过点O作EF的垂线,分别交AB、DC的延长线于点G、H,则线段GH、EF为等长的小路.再进行证明:过点H作HN⊥AB交AB的延长线于点P,过点E作EP⊥BC交BC的延长线于点P,利用AAS证明△GHN≌△FEP,即可得出GH=EF.
解:(1)以上三种设计方案都符合要求;
(2)如图1,∵四边形ABCD是正方形,
∴∠BAE=∠ADH=90°,AB=AD,
又∵BE⊥AH,
∴∠ABE=∠DAH=90°﹣∠BAH.
在△ABE与△DAH中,
,
∴△ABE≌△DAH(ASA),
∴BE=AH;
(3)如图,过点O作EF的垂线,分别交AB、DC的延长线于点G、H,则线段GH为所求小路.理由如下:
过点H作HN⊥AG于N,过点E作EP⊥BC交BC的延长线于点P,则∠GNH=∠FPE=90°.
∵AB∥CD,HN⊥AB,CB⊥AB,
∴NH=BC,
同理,EP=DC.
∵BC=DC,∴NH=EP.
∵GO⊥EF,∴∠MFO+∠FMO=90°,
∵∠BGM+∠GMB=90°,∠FMO=∠GMB,
∴∠BGM=∠MFO.
在△GHN与△FEP中,
,
∴△GHN≌△FEP(AAS),
∴GH=EF.
故答案为:ABE,DAH,BE,AH.
点评:本题考查了数学知识在实际生活中的应用,其中涉及到正方形的性质,余角的性质,全等三角形的判定与性质,难度不大.体现了数学知识来源于生活,并且为生活服务,能够激发同学们学习数学的热情.
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2010年浙江省杭州市萧山区中考数学模拟试卷(瓜沥二中 施栋梁 任亚文)(解析版) 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2003年山东省滨州市中考数学试卷(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com