精英家教网 > 初中数学 > 题目详情
如图,在直角坐标平面xOy内,点A在x轴的正半轴上,点B在第一象限内,精英家教网且∠OAB=90°,∠BOA=30°,OB=4.二次函数y=-x2+bx的图象经过点A,顶点为点C.
(1)求这个二次函数的解析式,并写出顶点C的坐标;
(2)设这个二次函数图象的对称轴l与OB相交于点D,与x轴相交于点E,求
DEDC
的值;
(3)设P是这个二次函数图象的对称轴l上一点,如果△POA的面积与△OCE的面积相等,求点P的坐标.
分析:(1)由∠OAB=90°,在直角三角形OAB中求得点A,代入函数式解得.
(2)直角三角形OAB中求得AB的长度,由抛物线的对称轴可知DE∥AB,OE=AE.求得DE,进而求得CD,从而求得.(3)利用三角形OCE和三角形POA的面积相等即求得.
解答:解:(1)∵∠OAB=90°,∠BOA=30°,OB=4,
OA=OB•cos30°=2
3

∴A(2
3
,0).(1分)
∵二次函数y=-x2+bx的图象经过点A,
-(2
3
)2+2
3
b=0

解得b=2
3

∴二次函数的解析式为y=-x2+2
3
x
.(2分)
顶点C的坐标是(
3
,3).(1分)

(2)∵∠OAB=90°,∠BOA=30°,OB=4,
∴AB=2.(1分)
由DE是二次函数y=-x2+2
3
x
的图象的对称轴,
可知DE∥AB,OE=AE.
DE
AB
=
OE
OA
=
1
2
.即得DE=1.(1分)
又∵C(
3
,3),∴CE=3.
即得CD=2.(1分)
DE
DC
=
1
2
.(1分)

(3)根据题意,可设P(
3
,n).
OE=
1
2
OA=
3
,CE=3,
S△OCE=
1
2
OE•CE=
3
2
3
.(1分)
S△POA=
1
2
OA•PE=
1
2
×2
3
|n|=
3
3
2

解得n=±
3
2
.(1分)
∴点P的坐标为P1
3
3
2
)、P2
3
-
3
2
).(2分)
点评:本题考查了二次函数的综合运用,考查了直角三角形内的三角函数,抛物线过一点,即代入求得;通过抛物线的对称轴来做题,方便快捷,这也考查了灵活的思维;通过面积的求得,来求得点的做标,只是考查的手段,问题考查的思路.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面xOy中,抛物线C1的顶点为A(-1,-4),且过点B(-3,0)
(1)写出抛物线C1与x轴的另一个交点M的坐标;
(2)将抛物线C1向右平移2个单位得抛物线C2,求抛物线C2的解析式;
(3)写出阴影部分的面积S.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面内,函数y=
m
x
(x>0,m是常熟)的图象经过A(1,4),B(a,b),其中a>1,过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD,DC,CB
(Ⅰ)求函数y=
m
x
的解析式;
(Ⅱ)若△ABD的面积为4,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

完成下列各题:
(1)解方程组
2x+y=2;         ①
3x-2y=10.      ②

(2)如图,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,sin∠BOA=
3
5
.求cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),要使以A、B、C、D为顶点的四边形是平行四边形,且点D坐标在第一象限,那么点D的坐标是
(2,5)或(8,5)
(2,5)或(8,5)

查看答案和解析>>

同步练习册答案