精英家教网 > 初中数学 > 题目详情
9.如图是某个几何体的三视图,该几何体为(  )
A.长方体B.四面体C.圆柱体D.四棱锥

分析 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.

解答 解:根据主视图和左视图为矩形是柱体,根据俯视图是矩形可判断出这个几何体应该是长方体.
故选A.

点评 本题考查由三视图确定几何体的形状,主要考查学生空间想象能力.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.下列图形中,不是中心对称图形的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,D为AB上一动点,将△ACD沿CD翻折得到△ECD,那么BE的最小值为(  )
A.$\sqrt{3}$B.4-$\sqrt{3}$C.$\sqrt{5}$D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.已知抛物线y=ax2+bx+c(a≠0)经过原点,顶点为A(h,k)(h≠0).
(1)当h=1,k=2时,求抛物线的解析式;
(2)若抛物线y=tx2(t≠0)也经过点A,过a与t之间的关系式;
(3)在(2)的条件下,已知a=-$\frac{1}{2}$,直线l:y=$\frac{4}{3}$x-1与抛物线y=tx2-$\frac{2}{3}$x-7交于点B,C,与x轴,y轴交于点D,E,点M在抛物线y=tx2-$\frac{2}{3}$x-7上,且点M的横坐标为m(0<m<6).MF∥y轴交于直线l于点F,点N在直线l上,且四边形MNFQ为矩形(如图),若矩形MNFQ的周长为P,求P的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.如图,在⊙O中,弦CD垂直直径AB于点E,已知OC=4,CD=4$\sqrt{2}$,则∠BAC的度数为(  )
A.15°B.22.5°C.30°D.45°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.计算:$\sqrt{8}$×$\sqrt{6}$-6$\sqrt{\frac{1}{3}}$-3$\sqrt{6}$÷2$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.先化简再求值:(x-1)2-x(x+2)-$\frac{4-2x}{x-2}$,其中x=$\frac{1}{4}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.在平面直角坐标系xoy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).
(1)请直接写出点B、C的坐标:B(3,0)、C(0,$\sqrt{3}$);并求经过A、B、C三点的抛物线解析式;
(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C. 此时,EF所在直线与(1)中的抛物线交于第一象限的点M.连接MB和MC,当△OCE∽△OBC时,判断四边形AEMC的形状,并给出证明;
(3)有一动点P在(1)中的抛物线上运动,是否存在点P,以点P为圆心作圆能和直线AC和x轴同时相切?若存在,求出圆心P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.阅读下面材料:
在小组活动中,小明探究了下面问题:菱形纸片ABCD的边长为5,折叠菱形纸片,将B、D两点重合在对角线BD上的同一点处,折痕分别为EF、GH.当重合点在对角线BD上移动时,六边形AEFCHG的周长的变化情况是怎样的?
小明发现:若∠ABC=60°,
①如图1,当重合点在菱形的对称中心O处时,六边形AEFCHG的周长为15;
②如图2,当重合点在对角线BD上移动时,六边形AEFCHG的周长不变(填“改变”或“不变”).
请帮助小明解决下面问题:
如果菱形纸片ABCD边长仍为5,改变∠ABC的大小,折痕EF的长为m.
(1)如图3,若∠ABC=120°,则六边形AEFCHG的周长为10+5$\sqrt{3}$;
(2)如图4,若∠ABC的大小为β,则六边形AEFCHG的周长可表示为10+10sin$\frac{β}{2}$.

查看答案和解析>>

同步练习册答案