精英家教网 > 初中数学 > 题目详情

下列各图中,作△ABC中BC边上的高正确的是


  1. A.
  2. B.
  3. C.
  4. D.
D
分析:根据三角形的高的概念:从三角形的一个顶点向对边引垂线,顶点和垂足间的线段叫三角形的高.
解答:A、是AC边上的高,错误;
B、不符合高的概念,错误;
C、是AB边上的高,错误;
D、是BC边上的高,正确.
故选D.
点评:能够根据高的概念正确作出三角形一边上的高.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

12、阅读下列证明过程:
已知,如图:四边形ABCD中,AB=DC,AC=BD,AD≠BC,求证:四边形ABCD是等腰梯形.

读后完成下列各小题.
(1)证明过程是否有错误如有,错在第几步上,答:
没有错误

(2)作DE∥AB的目的是:
为了证明AD∥BC

(3)判断四边形ABED为平行四边形的依据是:
一组对边平行且相等的四边形是平行四边形

(4)判断四边形ABCD是等腰梯形的依据是
梯形及等腰梯形的定义

(5)若题设中没有AD≠BC,那么四边形ABCD一定是等腰梯形吗?为什么?
不一定,因为当AD=BC时,四边形ABCD是矩形

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

观察与思考:阅读下列材料,并解决后面的问题.
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作 AD⊥BC于D(如图1),则sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC
.同理有:
c
sinC
=
a
sinA
a
sinA
=
b
sinB
,所以
a
sinA
=
b
sinB
=
c
sinC

即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.
(1)如图2,△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=
 
;AC=
 

(2)如图3,一货轮在C处测得灯塔A在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得灯塔A在货轮的北偏西75°的方向上(如图3),求此时货轮距灯塔A的距离AB.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知:△ABC中,
(1)只用直尺(没有刻度)和圆规求作一点P,使点P同时满足下列两个条件到三角形各边的距离都相等(要求保留作图痕迹,不必写出作法).
①点P到∠CAB的两边距离相等:
②点P到A,B两点的距离相等.
(2)若△ABC中,AC=AB=4,∠CAB=120°,那么请计算以△ABC为轴截面的圆锥的侧面积(保留根号和π).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

观察与思考:阅读下列材料,并解决后面的问题
在锐角△ABC中,∠A、∠B、∠C的对边分别是a、b、c,过A作AD⊥BC于D(如图(1)),则sinB=
AD
c
,sinC=
AD
b
,即AD=csinB,AD=bsinC,于是csinB=bsinC,即
b
sinB
=
c
sinC
,同理有:
c
sinC
=
a
sinA
a
sinA
=
b
sinB

所以
a
sinA
=
b
sinB
=
c
sinC

即:在一个三角形中,各边和它所对角的正弦的比相等在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.
根据上述材料,完成下列各题.

(1)如图(2),△ABC中,∠B=45°,∠C=75°,BC=60,则∠A=
60°
60°
;AC=
20
6
20
6

(2)自从去年日本政府自主自导“钓鱼岛国有化”闹剧以来,我国政府灵活应对,现如今已对钓鱼岛执行常态化巡逻.某次巡逻中,如图(3),我渔政204船在C处测得A在我渔政船的北偏西30°的方向上,随后以40海里/时的速度按北偏东30°的方向航行,半小时后到达B处,此时又测得钓鱼岛A在的北偏西75°的方向上,求此时渔政204船距钓鱼岛A的距离AB.(结果精确到0.01,
6
≈2.449

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在5×5的正方形网格,每个小正方形的边长都为1,线段AB的端点落在格点上,要求画一个四边形,所作的四边形为中心对称图形,同时满足下列要求:

(1)在图1中画出以AB为一边的四边形;
(2)分别在图2和图3中各画出一个以AB为一条对角线的四边形.

查看答案和解析>>

同步练习册答案