精英家教网 > 初中数学 > 题目详情
(12分)如图所示,一内壁光滑的细管弯成半径为R=0.4 m的半圆形轨道CD,竖直放置,其内径略大于小球的直径,水平轨道与竖直半圆轨道在C点连接完好.置于水平轨道上的弹簧左端与竖直墙壁相连,B处为弹簧的自然状态.将一个质量为m=0.8 kg的小球放在弹簧的右侧后,用力向左侧推小球而压缩弹簧至A处,然后将小球由静止释放,小球运动到C处后对轨道的压力为F1=58 N.水平轨道以B处为界,左侧AB段长为x=0.3 m,与小球的动摩擦因数为μ=0.5,右侧BC段光滑.g=10 m/s2,求:

(1)弹簧在压缩时所储存的弹性势能.
(2)小球运动到轨道最高处D点时对轨道的压力.
(1)11.2 J (2)10 N,方向向上解析:
(1)对小球在C处,由牛顿第二定律及向心力公式得
F1-mg=m
v1==m/s=5 m/s
从A到B由动能定理得Ep-μmgx=mv12
Ep=mv12+μmgx=×0.8×52 J+0.5×0.8×10×0.3 J=11.2 J.
(2)从C到D由机械能守恒定律得
mv12=2mgR+mv22
v2== m/s=3 m/s
由于v2>=2 m/s,所以小球在D处对轨道外壁有压力.
小球在D处,由牛顿第二定律及向心力公式得
F2+mg=m
F2=m(-g)=0.8×(-10) N=10 N.
由牛顿第三定律得小球对轨道压力为10 N.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题满分12分)

如图所示,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧),已知点坐标为().

 

 

 

 

 

 

 

(1)求此抛物线的解析式;

(2)过点作线段的垂线交抛物线于点

如果以点为圆心的圆与直线相切,请判断抛物

线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于

两点之间,问:当点运动到什么位置时,

面积最大?并求出此时点的坐标和的最大面积.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分12分)
如图所示,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧), 已知点坐标为().

(1)求此抛物线的解析式;
(2)过点作线段的垂线交抛物线于点
如果以点为圆心的圆与直线相切,请判断抛物
线的对称轴与⊙有怎样的位置关系,并给出证明;
(3)已知点是抛物线上的一个动点,且位于
两点之间,问:当点运动到什么位置时,
面积最大?并求出此时点的坐标和的最大面积.

查看答案和解析>>

科目:初中数学 来源:2012届部分学校九年级下学期联考数学卷 题型:解答题

(本题满分12分)如图所示,在平面直角坐标系中,矩形ABOC的边OB在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=,矩形ABOC绕点O按顺时针方向旋转60°后得矩形EFOD. 点A的对应点为点E,点B的对应点为F,点C的对应点为点D. 抛物线过点A、E、D.

【小题1】(1) 判断点E是否在y轴上,并说明理由;
【小题2】(2)求抛物线的解析式;
【小题3】(3)在x 轴的上方是否存在点P、Q,使以点O、B、P、Q为顶点的平行四边形的面积是矩形ABOC的面积的2倍,且点P在抛物线上,若存在,求P、Q两点的坐标,若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:2011-2012学年部分学校九年级下学期联考数学卷 题型:解答题

(本题满分12分) 如图所示,在平面直角坐标系中,矩形ABOC的边OB在x轴的负半轴上,边OC在y轴的正半轴上,且AB=1,OB=,矩形ABOC绕点O按顺时针方向旋转60°后得矩形EFOD. 点A的对应点为点E,点B的对应点为F,点C的对应点为点D.  抛物线过点A、E、D.

1.(1) 判断点E是否在y轴上,并说明理由;

2.(2)求抛物线的解析式;

3.(3)在x 轴的上方是否存在点P、Q,使以点O、B、P、Q为顶点的平行四边形的面积是矩形ABOC的面积的2倍,且点P在抛物线上,若存在,求P、Q两点的坐标,若不存在,请说明理由。

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年广西省贵港市九年级第一次教学质量监测数学卷 题型:解答题

(本题满分12分)

如图所示,在平面直角坐标系中,顶点为()的抛物线交轴于点,交轴于两点(点在点的左侧), 已知点坐标为().

 

 

 

 

 

 

 

(1)求此抛物线的解析式;

(2)过点作线段的垂线交抛物线于点

如果以点为圆心的圆与直线相切,请判断抛物

线的对称轴与⊙有怎样的位置关系,并给出证明;

(3)已知点是抛物线上的一个动点,且位于

两点之间,问:当点运动到什么位置时,

面积最大?并求出此时点的坐标和的最大面积.

 

查看答案和解析>>

同步练习册答案