精英家教网 > 初中数学 > 题目详情

【题目】如图,已知正方形ABCD的边长为10厘米,点E在边AB上,且AE=4厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.设运动时间为t秒.

(1)若点Q的运动速度与点P的运动速度相等,经过2秒后,BPECQP是否全等?请说明理由;

(2)若点Q的运动速度与点P的运动速度不相等,则当t为何值时,能够使BPECQP全等;此时点Q的运动速度为多少.

【答案】(1)BPECQP全等,理由见解析;(2)t=,

【解析】

(1)根据SAS可判定全等;

(2)由于点Q的运动速度与点P的运动速度不相等,而运动时间相同,所以BP≠CQ.又△BPE与△CQP全等,则有BP=PC=BC=5,CQ=BE=6,由BP=5求出运动时间,再根据速度=路程÷时间,即可得出点Q的速度.

(1)BPE与△CQP全等.

∵点Q的运动速度与点P的运动速度相等,且t=2

BP=CQ=2×2=4厘米

AB=BC=10厘米,AE=4厘米,

BE=CP=6厘米,

∵四边形ABCD是正方形,

∴在RtBPERtCQP中,

RtBPERtCQP;

(2)∵点Q的运动速度与点P的运动速度不相等,

BP≠CQ,

∵∠B=C=90°,

∴要使△BPE与△OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可.

∴点P,Q运动的时间t=(秒)

此时点Q的运动速度为(厘米/秒).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知MB=ND,MBA=NDC,下列条件中不能判定ABMCDN的是(

A. M=N B. AM=CN C. AB=CD D. AMCN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=6,AC=10,BC边上的中线AD=4,则ABC的面积为___________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在扇形AOB中∠AOB=90°,正方形CDEF的顶点C是 的中点,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2 时,则阴影部分的面积为( )

A.2π﹣4
B.4π﹣8
C.2π﹣8
D.4π﹣4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:

关注情况

频数

频率

A.高度关注

M

0.1

B.一般关注

100

0.5

C.不关注

30

N

D.不知道

50

0.25


(1)根据上述统计图可得此次采访的人数为人,m= , n=
(2)根据以上信息补全条形统计图;
(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知⊙O的半径为2,AB为直径,CD为弦.AB与CD交于点M,将 沿CD翻折后,点A与圆心O重合,延长OA至P,使AP=OA,连接PC.
(1)求CD的长;
(2)求证:PC是⊙O的切线;
(3)点G为 的中点,在PC延长线上有一动点Q,连接QG交AB于点E.交 于点F(F与B、C不重合).问GEGF是否为定值?如果是,求出该定值;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知二次函数y=﹣x2+bx+c(b,c为常数)的图象经过点A(5,3),点C(0,8),顶点为点M,过点A作AB∥x轴,交y轴于点D,交该二次函数图象于点B,连结BC.

(1)求该二次函数的解析式及点M的坐标;
(2)求△ABC的面积;
(3)若将该二次函数图象向下平移m(m>0)个单位,使平移后得到的二次函数图象的顶点落在△ABC的内部(不包括△ABC的边界),求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E、F分别在边BC,CD上,且BE=DF,点P是AF的中点,点Q是直线AC与EF的交点,连接PQ,PD.

(1)求证:AC垂直平分EF;
(2)试判断△PDQ的形状,并加以证明;
(3)如图2,若将△CEF绕着点C旋转180°,其余条件不变,则(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案