精英家教网 > 初中数学 > 题目详情

【题目】我市某中学艺术节期间,向学校学生征集书画作品.九年级美术李老师从全年级14个班中随机抽取了A、B、C、D 4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.
(1)李老师采取的调查方式是(填“普查”或“抽样调查”),李老师所调查的4个班征集到作品共件,其中B班征集到作品 , 请把图2补充完整.
(2)如果全年级参展作品中有4件获得一等奖,其中有2名作者是男生,2名作者是女生.现在要抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求用树状图或列表法写出分析过程)

【答案】
(1)抽样调查;12;3
(2)解:画树状图如下:

∵所有等可能的情况有12种,其中一男一女有8种,

∴恰好抽中一男一女的概率为: =


【解析】解:(1)∵李老师所调查的4个班征集到作品共:5÷ =12(件), ∴B班征集到作品:12﹣2﹣5﹣2=3(件);
∴李老师采取的调查方式是抽样调查,李老师所调查的4个班征集到作品共12件,其中B班征集到作品3件,
故答案为:抽样调查;12;3;
补全图2,如图所示:

(1)由题意可求得李老师所调查的4个班征集到作品共:5÷ =12(件),B班征集到作品:12﹣2﹣5﹣2=3(件);继而可补全条形统计图;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中一男一女的情况,再利用概率公式即可求得答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】以下是一位同学所做的实数运算解题过程的一部分. ﹣ ﹣|﹣1|2017﹣(π﹣3.14)0+4cos60°
=﹣ +1﹣1+4×
(1)指出上面解答过程中的错误,并写出正确的解答过程;
(2)若分式方程 +1= 的解与(1)中的最终结果相同,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为1的半圆形纸片,按如图方式折叠,使对折后半圆弧的中点M与圆心O重合,则图中阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在圆心角为90°的扇形OAB中,半径OA=4,C为 的中点,D、E分别为OA,OB的中点,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把Rt△ABC和Rt△DEF按如图(1)摆放(点C与E重合),点B、C(E)、F在同一条直线上.已知:∠ACB=∠EDF=90°,∠DEF=45°,AC=8cm,BC=6cm,EF=10cm.如图(2),△DEF从图(1)的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点A出发,以2cm/s的速度沿AB向点B匀速移动;当点P移动到点B时,点P停止移动,△DEF也随之停止移动.DE与AC交于点Q,连接PQ,设移动时间为t(s).
(1)用含t的代数式表示线段AP和AQ的长,并写出t的取值范围;
(2)连接PE,设四边形APEQ的面积为y(cm2),试探究y的最大值;
(3)当t为何值时,△APQ是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,六边形ABCDEF是正六边形,曲线FK1K2K3K4K5K6K7…叫做“正六边形的渐开线”,其中弧FK1 , 弧K1K2 , 弧K2K3 , 弧K3K4 , 弧K4K5 , 弧K5K6 , …的圆心依次按点A,B,C,D,E,F循环,其弧长分别记为L1 , L2 , L3 , L4 , L5 , L6 , ….当AB=1时,L2016等于(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y= (x>0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.
(1)求反比例函数和直线EF的解析式;
(2)求△OEF的面积;
(3)请结合图象直接写出不等式k2x+b﹣ >0的解集.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为
A(﹣1,1),B(﹣3,1),C(﹣1,4).
①画出△ABC关于y轴对称的△A1B1C1
②将△ABC绕着点B顺时针旋转90°后得到△A2BC2 , 请在图中画出△A2BC2 , 并求出线段BC旋转过程中所扫过的面积(结果保留π).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,AB是⊙O的直径,∠BAC=2∠B,⊙O的切线AP与OC的延长线相交于点P,若PA= cm,求AC的长.

查看答案和解析>>

同步练习册答案