精英家教网 > 初中数学 > 题目详情

已知抛物线y=ax2+bx+c(a≠0)在平面直角坐标系中的位置如图所示,则下列结论中,错误的是


  1. A.
    abc<0
  2. B.
    b2-4ac>0
  3. C.
    a-b+c<0
  4. D.
    a>2
D
分析:此题可利用排除法进行判断,根据二次函数图象的开口方向确定a>0,再根据对称轴在y轴左,可确定a与b同号,然后再根据二次函数与y轴的交点可以确定c<0,进而可以判断出A的正误,然后再根据抛物线与x轴的交点个数可以判断出B的正误,再根据x=-1时,结合图象可得到y的正负,进而可以判断出C的正误,进而得到答案.
解答:∵抛物线开口向上,
∴a>0,
∵对称轴在y轴左侧,
∴a与b同号,
∴b>0,
∵抛物线与y轴交于负半轴,
∴c<0,
∴abc<0,故A正确;
∵抛物线与x轴有两个交点,
∴b2-4ac>0,故B正确;
当x=-1时,a-b+c<0,故C正确;
故选:D.
点评:此题主要考查了二次函数图象与系数的关系,关键是掌握二次函数y=ax2+bx+c(a≠0),
①二次项系数a决定抛物线的开口方向和大小.
当a>0时,抛物线向上开口;当a<0时,抛物线向下开口.
②一次项系数b和二次项系数a共同决定对称轴的位置.
当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)
③常数项c决定抛物线与y轴交点. 抛物线与y轴交于(0,c).
④抛物线与x轴交点个数.
△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知抛物线y=ax2+bx+c(a≠0)经过A(-2,0),B(0,-4),C(2,-4)三点,且精英家教网与x轴的另一个交点为E.
(1)求抛物线的解析式;
(2)用配方法求抛物线的顶点D的坐标和对称轴;
(3)求四边形ABDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=ax2和直线y=kx的交点是P(-1,2),则a=
 
,k=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

2、已知抛物线y=ax2+bx+c的开口向下,顶点坐标为(2,-3),那么该抛物线有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知抛物线y=ax2+bx+c(其中b>0,c<0)的顶点P在x轴上,与y轴交于点Q,过坐标原点O,作OA⊥PQ,垂足为A,且OA=
2
,b+ac=3.
(1)求b的值;
(2)求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•广州)已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.
(1)使用a、c表示b;
(2)判断点B所在象限,并说明理由;
(3)若直线y2=2x+m经过点B,且于该抛物线交于另一点C(
ca
,b+8
),求当x≥1时y1的取值范围.

查看答案和解析>>

同步练习册答案