精英家教网 > 初中数学 > 题目详情
1.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)如图2,固定△ABC,将△DEC绕点C旋转,当点D恰好落在AB边上时,
①判断DE和AC的位置关系,并说明理由;
②设△BDC的面积为S1,△AEC的面积为S2,那么S1与S2的数量关系是S1=S2

(2)当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.
(3)如图4,∠ABC=60°,点D在其角平分线上,BD=CD=6,DE∥AB交BC于点E,若点F在射线BA上,并且S△DCF=S△BDE,请直接写出相应的BF的长.

分析 (1)①根据旋转的性质可得AC=CD,然后求出△ACD是等边三角形,根据等边三角形的性质可得∠ACD=60°,然后根据内错角相等,两直线平行解答;
②根据等边三角形的性质可得AC=AD,再根据直角三角形30°角所对的直角边等于斜边的一半求出AC=$\frac{1}{2}$AB,然后求出AC=BD,再根据等边三角形的性质求出点C到AB的距离等于点D到AC的距离,然后根据等底等高的三角形的面积相等解答;
(2)根据旋转的性质可得BC=CE,AC=CD,再求出∠ACN=∠DCM,然后利用“角角边”证明△ACN和△DCM全等,根据全等三角形对应边相等可得AN=DM,然后利用等底等高的三角形的面积相等证明;
(3)过点D作DF1∥BE,求出四边形BEDF1是菱形,根据菱形的对边相等可得BE=DF1,然后根据等底等高的三角形的面积相等可知点F1为所求的点,过点D作DF2⊥BD,求出∠F1DF2=60°,从而得到△DF1F2是等边三角形,然后求出DF1=DF2,再求出∠CDF1=∠CDF2,利用“边角边”证明△CDF1和△CDF2全等,根据全等三角形的面积相等可得点F2也是所求的点,然后在等腰△BDE中求出BE的长,即可得解.

解答 解:(1)①∵△DEC绕点C旋转点D恰好落在AB边上,
∴AC=CD,
∵∠BAC=90°-∠B=90°-30°=60°,
∴△ACD是等边三角形,
∴∠ACD=60°,
又∵∠CDE=∠BAC=60°,
∴∠ACD=∠CDE,
∴DE∥AC;

②∵∠B=30°,∠C=90°,
∴CD=AC=$\frac{1}{2}$AB,
∴BD=AD=AC,
根据等边三角形的性质,△ACD的边AC、AD上的高相等,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2=$\frac{1}{2}$×2×2$\sqrt{3}$=2$\sqrt{3}$;
故答案为:S1=S2

(2)如图,∵△DEC是由△ABC绕点C旋转得到,
∴BC=CE,AC=CD,
∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°-90°=90°,
∴∠ACN=∠DCM,
∵在△ACN和△DCM中,$\left\{\begin{array}{l}{∠ACN=∠DCM}\\{∠CMD=∠N}\\{AC=CD}\end{array}\right.$,
∴△ACN≌△DCM(AAS),
∴AN=DM,
∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),
即S1=S2

(3)如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,
所以BE=DF1,且BE、DF1上的高相等,
此时S△DCF1=S△BDE
过点D作DF2⊥BD,
∵∠ABC=60°,F1D∥BE,
∴∠F2F1D=∠ABC=60°,
∵BF1=DF1,∠F1BD=$\frac{1}{2}$∠ABC=30°,∠F2DB=90°,
∴∠F1DF2=∠ABC=60°,
∴△DF1F2是等边三角形,
∴DF1=DF2
∵BD=CD,∠ABC=60°,点D是角平分线上一点,
∴∠DBC=∠DCB=$\frac{1}{2}$×60°=30°,
∴∠CDF1=180°-∠BCD=180°-30°=150°,
∠CDF2=360°-150°-60°=150°,
∴∠CDF1=∠CDF2
∵在△CDF1和△CDF2中,$\left\{\begin{array}{l}{D{F}_{1}=D{F}_{2}}\\{∠CD{F}_{1}=∠CD{F}_{2}}\\{CD=CD}\end{array}\right.$,
∴△CDF1≌△CDF2(SAS),
∴点F2也是所求的点,
∵∠ABC=60°,点D是角平分线上一点,DE∥AB,
∴∠DBC=∠BDE=∠ABD=$\frac{1}{2}$×60°=30°,
又∵BD=4,
∴BE=$\frac{1}{2}$×6÷cos30°=3÷$\frac{\sqrt{3}}{2}$=2$\sqrt{3}$,
∴BF1=2$\sqrt{3}$,BF2=BF1+F1F2=2$\sqrt{3}$+2$\sqrt{3}$=4$\sqrt{3}$,
故BF的长为2$\sqrt{3}$或4$\sqrt{3}$.

点评 本题考查了全等三角形的判定与性质,三角形的面积,等边三角形的判定与性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟练掌握等底等高的三角形的面积相等,以及全等三角形的面积相等是解题的关键,(3)要注意符合条件的点F有两个.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

11.下列命题中,是真命题的是(  )
A.有理数都是有限小数
B.同旁内角互补
C.函数y=$\frac{1}{\sqrt{x-3}}$自变量x的取值范围是x≥3
D.若甲、乙两组数据中各有20个数据,平均数$\overline{{x}_{甲}}$=$\overline{{x}_{乙}}$,方差S2=1.25,S2=0.96,则说明乙组数据比甲组数据稳定

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.在下列软件的图标中,其中是中心对称图形的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

9.函数y=$\frac{x}{3-x}$的自变量取值范围是(  )
A.x≠3B.x≠0C.x≠3且x≠0D.x<3

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.在△ABC中,∠C=90°,BC=4cm,AC=3cm,把△ABC绕点A顺时针旋转90°后,得到△A1B1C1(如图所示),则线段AB所扫过的面积为(  )
A.5$\sqrt{2}$B.$\frac{25}{4}$πcm2C.$\frac{25}{2}$πcm2D.5πcm2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.下列关于图形旋转的说法不正确的是(  )
A.对应点到旋转中心的距离相等
B.对应点与旋转中心所连线段的夹角等于旋转角
C.旋转前后的图形全等
D.旋转后,图形的大小,形状与位置都发生了变化

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.若|a|=1,|b|=2,|c|=4,且|a+b-c|=a+b-c,求a+b+c的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知直线y=-x+3与x轴、y轴分别交于A,B两点,抛物线y=-x2+bx+c经过A,B两点,点P在线段OA上,从点O出发,向点A以1个单位/秒的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以$\sqrt{2}$个单位/秒的速度匀速运动,连接PQ,设运动时间为t秒.
(1)求抛物线的函数表达式;
(2)当t为何值时,△APQ是直角三角形?
(3)过点P作PE∥y轴,交AB于点E,过点Q作QF∥y轴,交抛物线于点F,连接EF,当EF∥PQ时,求点F的坐标;
(4)设抛物线顶点为M,连接BP,BM,MQ,当△BOP与△MBQ相似时,直接写出t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.从下列不等式中选择一个与x+1≥2组成不等式组,使该不等式组的解集为x≥1,那么这个不等式可以是(  )
A.x>-1B.x>2C.x<-1D.x<2

查看答案和解析>>

同步练习册答案