【题目】汽车刹车后,还会继续向前滑行一段距离,这段距离称为“刹车距离”刹车距离y(m)与刹车时的车速x(km/h)的部分关系如表:
刹车时的车速 | 0 | 50 | 100 | 150 | 200 |
刹车距离 | 0 | 5.5 | 21 | 46.5 | 82 |
(1)求出y与x之间的函数关系式.
(2)一辆车在限速120km/h的高速公路上行驶时出了事故,事后测得它的刹车距离为40.6m,问:该车在发生事故时是否超速行驶?
【答案】(1)y=0.002x2+0.01x;(2)是,见解析
【解析】
(1)根据表格中的数据先设解析式为二次函数一般式,然后代入其它点的坐标进行验证即可,也可以根据表格数据画函数图象后再设函数解析式也可以;
(2)根据(1)中所得函数关系式代入值即可求解.
解:(1)根据表中数据设函数解析式为:y=ax2+bx+c,代入后得
解得:
∴y=0.002x2+0.01x
将及代入,经检验等式成立,
说明此函数为二次函数.
∴y与x之间的函数关系式为y=0.002x2+0.01x.
(2)当x=120时,y=0.002×1202+0.01×120=30,
即在该速度下的最大刹车距离为30m.
∵30<40.6.
∴该车超速.
答:该车在发生事故时是超速行驶
科目:初中数学 来源: 题型:
【题目】下面是小芸设计的“过圆外一点作已知圆的切线”的尺规作图过程.
已知:⊙O及⊙O外一点P.
求作:⊙O的一条切线,使这条切线经过点P.
作法:①连接OP,作OP的垂直平分线l,交OP于点A;
②以A为圆心,AO为半径作圆,交⊙O于点M;
③作直线PM,则直线PM即为⊙O的切线.
根据小芸设计的尺规作图过程,
(1)用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成证明:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,对称轴为直线x=1的抛物线y=x2﹣bx+c与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于C点,且+=﹣.
(1)求抛物线的解析式;
(2)抛物线顶点为D,直线BD交y轴于E点;
①设点P为线段BD上一点(点P不与B、D两点重合),过点P作x轴的垂线与抛物线交于点F,求△BDF面积的最大值;
②在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=x2+bx+c与直线y=x交于(1,1)和(3,3)两点,现有以下结论:①b2﹣4c>0;②3b+c+6=0;③当x2+bx+c>时,x>2;④当1<x<3时,x2+(b﹣1)x+c<0,其中正确的序号是( )
A. ①②④B. ②③④C. ②④D. ③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xoy中, 一块含60°角的三角板作如图摆放,斜边 AB在x轴上,直角顶点C在y轴正半轴上,已知点A(-1,0).
(1)请直接写出点B、C的坐标:B( , )、C( , );并求经过A、B、C三点的抛物
线解析式;
(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段
AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C. 此时,EF所在直线与(1)中的抛物线交于第一象限的点M.
①设AE=x,当x为何值时,△OCE∽△OBC;
②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形,若存在,请求点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c(a,b,c为常数,且a≠0)中的x与y的部分对应值如表:
X | ﹣1 | 0 | 1 | 3 |
y | ﹣ | 3 | 3 |
下列结论:
(1)abc<0;
(2)当x>1时,y的值随x值的增大而减小;
(3)16a+4b+c<0;
(4)抛物线与坐标轴有两个交点;
(5)x=3是方程ax2+(b﹣1)x+c=0的一个根;
其中正确的个数为( )
A.5个B.4个C.3个D.2个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC内接于⊙O,且AB=AC,直径AD交BC于点E,F是OE上的一点,使CF∥BD.
(1)求证:BE=CE;
(2)若BC=8,AD=10,求四边形BFCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是数值转换机的示意图,小明按照其对应关系画出了y与x的函数图象(如图):
(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式:
(2)求出所输出的y的值中最小一个数值;
(3)写出当x满足什么范围时,输出的y的值满足3≤y≤6.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线与轴交于、两点,与轴交于点.
(1)求抛物线的解析式;
(2)点是第一象限内抛物线上的一个动点(与点、不重合),过点作轴于点,交直线于点,连接、.设点的横坐标为,的面积为.求关于的函数解析式及自变量的取值范围,并求出的最大值;
(3)已知为抛物线对称轴上一动点,若是以为直角边的直角三角形,请直接写出点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com