【题目】如图,以的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,,若的长为,则图中阴影部分的面积__________.
【答案】
【解析】
连接OA,如图,则∠COA=2∠B,由AD=AB可得∠B=∠D,进而可利用三角形的内角和得出∠OAD=90°,由弧长公式可求出半径OA的长,从而可在Rt△OAD中,利用解直角三角形的知识求出AD的长,然后根据S阴影=S△OAD﹣S扇形COA计算即可.
解:连接OA,如图,则∠COA=2∠B,
∵AD=AB,∴∠B=∠D=30°,
∴∠COA=60°,
∴∠OAD=180°﹣60°﹣30°=90°,
∵的长为,
∴,∴OA=2,
在Rt△OAD中,OA=2,∠D=30°,
∴OD=2OA=4,AD=2,
∴S△OAD=OAAD=×2×2=2,
∵∠COA=60°,
∴S扇形COA=,
所以S阴影=S△OAD﹣S扇形COA=.
科目:初中数学 来源: 题型:
【题目】已知二次函数的图像与x轴相交于点A和点B(点A在点B的左侧),与y轴相交于点C.一次函数的图像与y轴相交于点D,其中.
(1)分别求出A、B、C三点的坐标(可以用含有字母a的代数式表示).
(2)点P与点C关于抛物线的对称轴成轴对称,点Q为抛物线上的一个动点.
①试说明点P在直线的图像上.
②若点Q在抛物线上有且只有三个位置满足,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》中记载:“今有上禾三秉,益实六斗,当下禾十秉.下禾五秉,益实一斗,当上禾二秉.问上、下禾实一秉各几何?”其大意是:今有上等稻子三捆,若打出来的谷子再加六斗,则相当于十捆下等稻子打出来的谷子.有下等稻子五捆,若打出来的谷子再加一斗,则相当于两捆上等稻子打岀来的谷子.问上等、下等稻子每捆能打多少斗谷子?设上等稻子每捆能打x斗谷子,下等稻子每捆能打y斗谷子,根据题意,可列方程组为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形ABC和正方形DEFG按如图所示摆放,其中 D,E两点分别在AB,BC上,且BD=DE.若AB=12,DE=4,则△EFC的面积为( )
A.4B.8C.12D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲车从A地出发匀速驶向B地,到达B地后,立即按原路原速返回A地;乙车从B地出发沿相同路线匀速驶向A地,出发t(t>0)小时后,乙车因故在途中停车1小时,然后继续按原速驶向A地,乙车在行驶过程中的速度是80千米/时,甲车比乙车早1小时到达A地,两车距各自出发地的路程y千米与甲车行驶时间x小时之间的函数关系如图所示,请结合图象信息,解答下列问题:
(1)写出甲车行驶的速度,并直接在图中的( )内填上正确的数;
(2)求甲车从B地返回A地的过程中,y与x的函数解析式(不需要写出自变量x的取值范围);
(3)若从乙车出发至甲车到达A地,两车恰好有两次相距80千米,直接写出t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(问题提出):有同样大小正方形256个,拼成如图1所示的的一个大的正方形.请问如果用一条直线穿过这个大正方形的话,最多可以穿过多少个小正方形?
(问题探究):我们先考虑以下简单的情况:一条直线穿越一个正方形的情况.(如图2)
从图中我们可以看出,当一条直线穿过一个小正方形时,这条直线最多与正方形上、下、左、右四条边中的两个边相交,所以当一条直线穿过一个小正方形时,这条直线会与其中某两条边产生两个交点,并且以两个交点为顶点的线段会全部落在小正方形内.
这就启发我们:为了求出直线最多穿过多少个小正方形,我们可以转而去考虑当直线穿越由小正方形拼成的大正方形时最多会产生多少个交点.然后由交点数去确定有多少根小线段,进而通过线段的根数确定下正方形的个数.
再让我们来考虑正方形的情况(如图3):
为了让直线穿越更多的小正方形,我们不妨假设直线右上方至左下方穿过一个的正方形,我们从两个方向来分析直线穿过正方形的情况:从上下来看,这条直线由下至上最多可穿过上下平行的两条线段;从左右来看,这条直线最多可穿过左右平行的四条线段;这样直线最多可穿过的大正方形中的六条线段,从而直线上会产生6个交点,这6个交点之间的5条线段,每条会落在一个不同的正方形内,因此直线最多能经过5个小正方形.
(问题解决):
(1)有同样大小的小正方形16个,拼成如图4所示的的一个大的正方形.如果用一条直线穿过这个大正方形的话,最多可以穿过_________个小正方形.
(2)有同样大小的小正方形256个,拼成的一个大的正方形.如果用一条直线穿过这个大正方形的话,最多可以穿过___________个小正方形.
(3)如果用一条直线穿过的大正方形的话,最多可以穿过___________个小正方形.
(问题拓展):
(4)如果用一条直线穿过的大长方形的话(如图5),最多可以穿过个___________小正方形.
(5)如果用一条直线穿过的大长方形的话(如图6),最多可以穿过___________个小正方形.
(6)如果用一条直线穿过的大长方形的话,最多可以穿过________个小正方形.
(类比探究):
由二维的平面我们可以联想到三维的立体空间,平面中的正方形中四条边可联想到正方体中的正方形的六个面,类比上面问题解决的方法解决如下问题:
(7)如图7有同样大小的小正方体8个,拼成如图所示的的一个大的正方体.如果用一条直线穿过这个大正方体的话,最多可以穿过___________个小正方体.
(8)如果用一条直线穿过的大正方体的话,最多可以穿过_________个小正方体.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为的直径,AC,BC分别交于点E,D,,.现给出以下四个结论:①;②;③;④.其中正确结论的序号是________.(填写所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数y=在第一象限内的图象上的两点,且A,B两点的横坐标分别是2和4,则△OAB的面积是( )
A. 4 B. 3 C. 2 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线经过的三个顶点,与轴相交于,点坐标为,点是点关于轴的对称点,点在轴的正半轴上.
(1)求该抛物线的函数解析式;
(2)点为线段上一动点,过点作轴,轴, 垂足分别为点,,当四边形为正方形时,求出点的坐标;
(3)将(2) 中的正方形沿向右平移,记平移中的正方形为正方形,当点和点重合时停止运动, 设平移的距离为,正方形的边与交于点,所在的直线与交于点, 连接,是否存在这样的,使是等腰三角形?若存在,求的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com