精英家教网 > 初中数学 > 题目详情
如图,⊙O的半径为5,PA切⊙O于点A,∠APO=30°,则切线长PA为    .(结果保留根号)
【答案】分析:连接OA,由切线性质知△OPA为直角三角形,从而在Rt△OPA中通过解直角三角形求得PA的长.
解答:解:连接OA,则∠OAP=90°.
Rt△OAP中,OA=5,∠APO=30°,
∴PA=OA•cot30°=5
点评:本题考查了圆的切线性质,及解直角三角形的知识.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为5,AB=5
3
,C是圆上一点,则∠ACB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为3,直径AB⊥弦CD,垂足为E,点F是BC的中点,那么EF2+OF2=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为
5
,圆心与坐标原点重合,在直角坐标系中,把横坐标、纵坐标都是整数的点称为格点,则⊙O上格点有
 
个,设L为经过⊙O上任意两个格点的直线,则直线L同时经过第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的半径为13cm,弦AB∥CD,两弦位于圆心O的两侧,AB=24cm,CD=10cm,求AB和CD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的半径为5,P是弦MN上的一点,且MP:PN=1:2.若PA=2,则MN的长为
6
2
6
2

查看答案和解析>>

同步练习册答案