精英家教网 > 初中数学 > 题目详情
(2012•崇左)如图,有四张背面相同的纸牌A、B、C、D其正面分别画有正三角形、圆、平行四边形、正五边形,某同学把这四张牌背面向上洗匀后摸出一张,放回洗匀再摸出一张.
(1)请用树状图或表格表示出摸出的两张牌所有可能的结果;
(2)求摸出两张牌的牌面图形都是中心对称图形的概率.
分析:(1)首先根据题意画出树状图,然后由树状图即可求得所有等可能的结果;
(2)由(1)中的树状图求得两张牌的牌面图形都是中心对称图形的情况,再利用概率公式求解即可求得答案.
解答:解:(1)画树状图得:

则共有16种等可能的结果;

(2)∵只有B(圆)和C(平行四边形)是中心对称图形,
∴上述16种等可能结果中,有4种都是中心对称图形:CC,BB,BC,CB.
∴P(都是中心对称图形)=
4
16
=
1
4
点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•崇左)如图,Rt△AOB放置在坐标系中,点A的坐标是(1,0),点B的坐标是(0,2),把Rt△AOB绕点A按顺时针方向旋转90度后,得到Rt△AO′B′,则B′的坐标是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•崇左)如图所示,直线a∥b,△ABC是直角三角形,∠A=90°,∠ABF=25°,则∠ACE等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•崇左)如图,已知∠XOY=90°,等边三角形PAB的顶点P与O点重合,顶点A是射线OX上的一个定点,另一个顶点B在∠XOY的内部.
(1)当顶点P在射线OY上移动到点P1时,连接AP1,请用尺规作图;在∠XOY内部作出以AP1为边的等边△AP1B1(要求保留作图痕迹,不要求写作法和证明);
(2)设AP1交OB于点C,AB的延长线交B1P1于点D.求证:△ABC∽△AP1D;
(3)连接BB1,求证:∠ABB1=90°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•崇左)如图所示,抛物线y=ax2+bx+c(a≠0)的顶点坐标为点A(-2,3),且抛物线y=ax2+bx+c与y轴交于点B(0,2).
(1)求该抛物线的解析式;
(2)是否在x轴上存在点P使△PAB为等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)若点P是x轴上任意一点,则当PA-PB最大时,求点P的坐标.

查看答案和解析>>

同步练习册答案