【题目】如图,已知△ABC 的顶点分别为 A(-2,2)、B(-4,5)、C(-5,1)和直线 m (直线 m 上各点的横坐标都为 1).
(1)作出△ABC 关于 轴对称的图形△A1B1C1,并写出点 A1 的坐标;
(2)作出点 C关于直线 m 对称的点C2 , 并写出点C2 的坐标;
(3)在轴上找一点P,使 PA+PC的值最小,请直接写出点P的坐标.
科目:初中数学 来源: 题型:
【题目】如图,矩形中,为的中点,将沿翻折得到,延长交于G,,垂足为H,连接,.以下结论:①;②;③;④;其中正确的个数是()
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市为了创建绿色生态城市,在城东建了“东州湖”景区,小明和小亮想测量“东州湖”东西两端A、B间的距离.于是,他们去了湖边,如图,在湖的南岸的水平地面上,选取了可直接到达点B的一点C,并测得BC=350米,点A位于点C的北偏西73°方向,点B位于点C的北偏东45°方向.请你根据以上提供的信息,计算“东州湖”东西两端之间AB的长.(结果精确到1米)(参考数据:sin73°≈0.9563,cos73≈0.2924,tan73°≈3.2709,≈1.414.)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】利达经销店为某工厂代销一种建筑材料(这里的代销是指厂家先免费提供货源,待货物售出后再进行结算,未售出的由厂家负责处理).当每吨售价为260元时,月销售量为45吨.该经销店为提高经营利润,准备采取降价的方式进行促销.经市场调查发现:当每吨售价每下降10元时,月销售量就会增加7.5吨.综合考虑各种因素,每售出一吨建筑材料共需支付厂家及其它费用100元.设每吨材料售价为x(元),该经销店的月利润为y(元).
(1)当每吨售价是240元时,计算此时的月销售量;
(2)求出y与x的函数关系式(不要求写出x的取值范围);
(3)该经销店要获得最大月利润,售价应定为每吨多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目 | 里程费 | 时长费 | 远途费 |
单价 | 1.8元/千米 | 0.3元/分 | 0.8元/千米 |
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为行车里程7千米以内(含7千米)不收远途费,超过7千米的,超出部分每千米收0.8元. |
(1)小王与小张各自乘坐滴滴快车,在同一地点约见,已知到达约见地点,他们的实际行车里程分别为6千米与8.5千米,两人付给滴滴快车的乘车费相同(1)求这两辆滴滴快车的实际行车时间相差多少分钟;
(2)实际乘车时间较少的人,由于出发时间比另一人早,所以提前到达约见地点在大厅等候.已知他等候另一人的时间是他自己实际乘车时间的1.5倍,且比另一人的实际乘车时间的一半多8.5分钟,计算两人各自的实际乘车时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,以CD为直径的⊙O分别交AC,BC于点E,F两点,过点F作FG⊥AB于点G.
(1)试判断FG与⊙O的位置关系,并说明理由.
(2)若AC=3,CD=2.5,求FG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴于点、(在的左侧),交轴于点,且,.
(1)求抛物线的解析式;
(2)点为第四象限抛物线上一点,过点作轴的平行线交于点,设点横坐标为,线段的长度为,求与的函数关系式.(不要求写出的取值范围)
(3)在(2)的条件下,为延长线上一点,且,连接、、,的面积为,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为发展学生的核心素养,培养学生的综合能力,某学校计划开设四门选修课:乐器、舞蹈、绘画、书法,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门) .对调查结果进行整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:
本次调查的学生共有___ 人,在扇形统计图中,的值是_ ;
将条形统计图补充完整;
在被调查的选修书法的学生中,有名为女同学,其余为男同学,现要从选修书法的同学中随机抽取名同学代表学校参加某社区组织的书法活动,请你用列表或画树状图的方法.求所抽取的名同学恰好是名男同学和名女同学的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:将函数l的图象绕点P(m,0)旋转180°,得到新的函数l'的图象,我们称函数l'是函数关于点P的相关函数.
例如:当m=1时,函数y=(x+1)2+5关于点P(1,0)的相关函数为y=﹣(x﹣3)2﹣5.
(1)当m=0时
①一次函数y=x﹣1关于点P的相关函数为 ;
②点(,﹣)在二次函数y=﹣ax2﹣ax+1(a≠0)关于点P的相关函数的图象上,求a的值.
(2)函数y=(x﹣1)2+2关于点P的相关函数y=﹣(x+3)2﹣2,则m= ;
(3)当m﹣1≤x≤m+2时,函数y=x2﹣mx﹣m2关于点P(m,0)的相关函数的最大值为6,求m的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com