精英家教网 > 初中数学 > 题目详情

(1)如图一,等边△ABC中,D是AB上的动点,以CD为一边,向上作等边△EDC,连结AE。求证:AE//BC;
(2)如图二,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形。所作△EDC改成相似于△ABC。请问:是否仍有AE//BC?证明你的结论。
              

(1)见解析(2)见解析

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)如图一,等边三角形MNP的边长为1,线段AB的长为4,点M与A重合,点N在线段AB上.△MNP沿线段AB按A→B的方向滚动,直至△MNP中有一个点与点B重合为止,则点P经过的路程为
 

(2)如图三,正方形MNPQ的边长为1,正方形ABCD的边长为2,点M与点A重合,点N在线段AB上,点P在正方形内部,正方形MNPQ沿正方形ABCD的边按A→B→C→D→A→…的方向滚动,始终保持M,N,P,Q四点在正方形内部或边界上,直至正方形MNPQ回到初始位置为止,则点P经过的最短路程为
 

精英家教网
(注:以△MNP为例,△MNP沿线段AB按A→B的方向滚动指的是先以顶点N为中心顺时针旋转,当顶点P落在线段AB上时,再以顶点P为中心顺时针旋转,如此继续.多边形沿直线滚动与此类似.)

查看答案和解析>>

科目:初中数学 来源: 题型:

(1) 如图一,等边三角形MNP的边长为1,线段AB的长为4,点MA重合,点N在线段AB上. △MNP沿线段AB的方向滚动, 直至△MNP中有一个点与点B重合为止,则点P经过的路程为           ;(2)如图二,正方形MNPQ的边长为1,正方形ABCD的边长为2,点M与点A重合,点N在线段AB上, 点P在正方形内部,正方形MNPQ沿正方形ABCD的边按的方向滚动,始终保持M,N,P,Q四点在正方形内部或边界上,直至正方形MNPQ回到初始位置为止, 则点P经过的最短路程为           .

(注:以△MNP为例,△MNP沿线段AB的方向滚动指的是先以顶点N为中心
顺时针旋转,当顶点P落在线段AB上时, 再以顶点P为中心顺时针旋转,如此继续. 多边形沿直线滚动与此类似.)

查看答案和解析>>

科目:初中数学 来源:2005年初中毕业升学考试(江苏苏州卷)数学(解析版) 题型:解答题

(1)如图一,等边△ABC中,D是AB上的动点,以CD为一边,向上作等边△EDC,连结AE。求证:AE//BC;

(2)如图二,将(1)中等边△ABC的形状改成以BC为底边的等腰三角形。所作△EDC改成相似于△ABC。请问:是否仍有AE//BC?证明你的结论。

              

 

 

 

 

查看答案和解析>>

科目:初中数学 来源:2012届浙江省台州六校九年级上学期第二次联考数学卷(解析版) 题型:填空题

 (1) 如图一,等边三角形MNP的边长为1,线段AB的长为4,点MA重合,点N在线段AB上. △MNP沿线段AB的方向滚动, 直至△MNP中有一个点与点B重合为止,则点P经过的路程为            ;(2)如图二,正方形MNPQ的边长为1,正方形ABCD的边长为2,点M与点A重合,点N在线段AB上, 点P在正方形内部,正方形MNPQ沿正方形ABCD的边按的方向滚动,始终保持M,N,P,Q四点在正方形内部或边界上,直至正方形MNPQ回到初始位置为止, 则点P经过的最短路程为            .

 

(注:以△MNP为例,△MNP沿线段AB的方向滚动指的是先以顶点N为中心

顺时针旋转,当顶点P落在线段AB上时, 再以顶点P为中心顺时针旋转,如此继续. 多边形沿直线滚动与此类似.)

 

查看答案和解析>>

同步练习册答案