精英家教网 > 初中数学 > 题目详情
精英家教网二次函数y=ax2+bx+c的图象的一部分如图,已知它的顶点M在第二象限,且经过点A(1,0)和点B(0,1).
(1)请判断实数a的取值范围,并说明理由;
(2)设此二次函数的图象与x轴的另一个交点为C,当△AMC的面积为△ABC面积的
54
倍时,求a的值.
分析:(1)将A、B代入抛物线的解析式中,可得出a、b的关系式,然后用a表示出抛物线的解析式.根据图象首先肯定的是抛物线的开口向下,因此a<0,由于抛物线顶点在第二象限即抛物线对称轴在y轴左侧,根据抛物线的对称性可知:A点关于抛物线的对称点必在(-1,0)的左侧,因此当x=-1时,抛物线的值必大于0由此可求出a的取值范围;
(2)根据抛物线的解析式(只含a一个待定系数的函数式)表示出顶点M和C点的坐标,然后根据题中给出的面积的等量关系式,可求出a的值.
解答:解:(1)由图象可知:a<0
图象过点(0,1),
所以c=1,图象过点(1,0),
则a+b+1=0
当x=-1时,应有y>0,则a-b+1>0
将a+b+1=0代入,可得a+(a+1)+1>0,
解得a>-1
所以,实数a的取值范围为-1<a<0;

(2)此时函数y=ax2-(a+1)x+1,
M点纵坐标为:
4a-(a+1)2
4a
=
-(a-1)2
4a

图象与x轴交点坐标为:ax2-(a+1)x+1=0,
解得;x 1=1,x 2=
1
a

则AC=1-
1
a
=
a-1
a

要使S△AMC=
1
2
×
-(a-1)2
4a
×
a-1
a
=
(1-a)3
8a2
=
5
4
S△ABC=
5
4
a-1
2a

可求得a=
-3+
5
2
点评:本题主要考查了抛物线的性质、图形面积的求法等知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-3,0)、B两点,与y轴交于精英家教网点C(0,
3
)
,当x=-4和x=2时,二次函数y=ax2+bx+c(a≠0)的函数值y相等,连接AC、BC.
(1)求实数a,b,c的值;
(2)若点M、N同时从B点出发,均以每秒1个单位长度的速度分别沿BA、BC边运动,其中一个点到达终点时,另一点也随之停止运动,当运动时间为t秒时,连接MN,将△BMN沿MN翻折,B点恰好落在AC边上的P处,求t的值及点P的坐标;
(3)在(2)的条件下,抛物线的对称轴上是否存在点Q,使得以B,N,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

二次函数y=ax2+bx+c,当x=
12
时,有最大值25,而方程ax2+bx+c=0的两根α、β,满足α33=19,求a、b、c.

查看答案和解析>>

科目:初中数学 来源: 题型:

如果二次函数y=ax2+bx+c的图象的顶点坐标是(2,4),且直线y=x+4依次与y轴和抛物线相交于P、Q、R三点,PQ:QR=1:3,求这个二次函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①abc>0;②2a+b=0;③a+b+c>0;④当-1<x<3时,y>0.其中正确结论的序号是
②③④
②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•孝感)二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示.对于下列说法:
①abc<0;②a-b+c<0;③3a+c<0;④当-1<x<3时,y>0.
其中正确的是
①②③
①②③
(把正确的序号都填上).

查看答案和解析>>

同步练习册答案