分析 (1)根据∠BAC=∠EAD=90°,得出∠CAD=∠BAE,在△BAE和△CAD中,根据SAS得出△BAE≌△CAD,即可证出BE=CD;
(2)当点G在线段AB上时,根据(1)和AA得出△CGA∽△BGK,求出AG•GB=GC•KG,再根据AC=8,GA=2,得出GC•KG=12;当点G在线段AB延长线上时,再根据已知条件求出△CGA∽△BGK,得出AG•GB=GC•KG,再根据AC=8,GA=2,得出GC•KG=20;
解答 解:(1)∵∠BAC=∠EAD=90°
∴∠BAC+∠BAD=∠EAD+∠BAD,
∴∠CAD=∠BAE,
在△BAE和△CAD中,$\left\{\begin{array}{l}{AB=AC}\\{∠BAE=∠CAD}\\{AE=AD}\end{array}\right.$,
∴△BAE≌△CAD(SAS),
∴BE=CD;
(2)当点G在线段AB上时(如图1)
∵△BAE≌△CAD,
∴∠ACD=∠ABE,
又∵∠CGA=∠BGK,
∴△CGA∽△BGK,
∴$\frac{AG}{KG}$=$\frac{GC}{GB}$,
∴AG•GB=GC•KG,
∵AC=8,
∴AB=8,
∵GA=2,
∴GB=6.
∴GC•KG=12,
当点G在线段AB延长线上时(如图2)
∵△BAE≌△CAD
∴∠ACD=∠ABE,
又∵∠BGK=∠CGA,
∴△CGA∽△BGK,
∴$\frac{AG}{KG}$=$\frac{CG}{GB}$,
∴AG•GB=GC•KG;
∵AC=8,
∴AB=8,
∵GA=2,
∴GB=10
∴GC•KG=20.
点评 此题考查了相似形的综合,用到的知识点是全等三角形的判定与性质、相似三角形的判定与性质、等腰直角三角形的性质,解题的关键是能画出图形.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com