精英家教网 > 初中数学 > 题目详情

【题目】已知:如图1,在中,,∠ABC=30°,点E分别是边AC上动点,点不与点重合,DEBC

1)如图1,当AE=1时,求长;

2)如图2,把沿着直线翻折得到,设

①当点F落在斜边上时,求的值;

如图3,当点F落在外部时,EFDF分别与相交于点HG,如果△ABC和△DEF重叠部分的面积为,求的函数关系式及定义域.(直接写出答案)

【答案】1BD=;(2)①x=2;②.

【解析】

1)根据DEBC,可得∠ADE=30°,然后分别利用三角函数求出ABAD即可;

2)①设,则AE=EF=4x,然后证明CEF是等边三角形即可解决问题;

②由①可知CE=xAE=EF=4xCEF是等边三角形,然后分别求出HFFGAD,利用三角形面积公式计算出,进而得到,然后根据列式整理,并求出定义域即可.

解:(1)∵,∠ABC=30°AE=1

DEBC

∴∠ADE=30°

BD=ABAD=

2)①设,则AE=4x

EF=4x

∵∠ADE=B =30°

∴∠AED=C =60°

∴∠CEF=180°60°60°=60°

CEF是等边三角形,

CE=EF,即x=4-x

x=2

②由①可知CE=xAE=EF=4xCEF是等边三角形,

HF=EFEH=4xx=42x,∠FHG=CHE=60°

∵∠F=A=90°

FG=HF=

AE= 4x,∠ADE=30°

∵当x=2时,点F落在斜边上,

∴定义域为:

.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是半径为2的O的弦,将沿着弦AB折叠,正好经过圆心O,点C是折叠后的上一动点,连接并延长BC交O于点D,点E是CD的中点,连接AC,AD,EO.则下列结论:①∠ACB=120°,②△ACD是等边三角形,EO的最小值为1,其中正确的是_____.(请将正确答案的序号填在横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,的内接正十边形的一边,平分于点,则下列结论正确的有(

;②;③;④

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在ABC中,∠B60°,点M从点B出发沿射线BC方向,在射线BC上运动.在点M运动的过程中,连结AM,并以AM为边在射线BC上方,作等边AMN,连结CN

1)当∠BAM   °时,AB2BM

2)请添加一个条件:   ,使得ABC为等边三角形;

①如图1,当ABC为等边三角形时,求证:CN+CMAC

②如图2,当点M运动到线段BC之外(即点M在线段BC的延长线上时),其它条件不变(ABC仍为等边三角形),请写出此时线段CNCMAC满足的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(本小题满分9分)如图,点ORt△ABC斜边AB上的一点,以OA为半径的⊙OBC切于点D,与AC交于点E,连接AD

1)求证:AD平分∠BAC

2)若∠BAC = 60°OA = 2,求阴影部分的面积(结果保留).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知以AE为直径的半圆圆心为O,半径为5,矩形ABCD的顶点B在直径AE上,顶点C 在半圆上,AB=8,点P为半圆上一点(不与A、E两点重合).

(1)矩形ABCD的边BC的长为多少;

(2)将矩形沿直线AP折叠,点B落在点B′.

①点B′到直线AE的最大距离是多少;

②当点P与点C重合时,如图2所示,AB′交DC于点M.

求证:四边形AOCM是菱形,并通过证明判断CB′与半圆的位置关系;

③当EB′∥BD时,直接写出EB′的长为多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+bx+c与x轴相交于A(-1,0),B(5,0)两点.

(1)求抛物线的解析式;

(2)在第二象限内取一点C,作CD垂直x轴于点D,链接AC,且AD=5,CD=8,将Rt△ACD沿x轴向右平移m个单位,当点C落在抛物线上时,求m的值;

(3)在(2)的条件下,当点C第一次落在抛物线上记为点E,点P是抛物线对称轴上一点.试探究:在抛物线上是否存在点Q,使以点B、E、P、Q为顶点的四边形是平行四边形?若存在,请出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】车间有20名工人,某一天他们生产的零件个数统计如下表:

生产零件的个数()

9

10

11

12

13

14

15

16

17

工人人数()

1

1

6

4

2

2

2

1

1

1)求这一天20名工人生产零件的平均个数;

2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】全民健身运动已成为一种时尚,为了了解我市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散布;E:不运动.

以下是根据调查结果绘制的统计图表的一部分.

运动形式

A

B

C

D

E

人数

12

30

m

54

9

请你根据以上信息,回答下列问题:

(1)接受问卷调查的共有   人,图表中的m=   ,n=   

(2)统计图中,A类所对应的扇形圆心角的度数为   

(3)根据调查结果,我市市民最喜爱的运动方式是   ,不运动的市民所占的百分比是   

(4)我市碧沙岗公园是附近市民喜爱的运动场所之一,每晚都有暴走团活动,若最邻近的某社区约有1500人,那么估计一下该社区参加碧沙岗暴走团的大约有多少人?

查看答案和解析>>

同步练习册答案