精英家教网 > 初中数学 > 题目详情

在平面直角坐标系中,矩形OABC如图所示放置,点A在x轴上,点B的坐标为(m,1)(m>0),将此矩形绕O点逆时针旋转90°,得到矩形OA′B′C′.
(1)写出点A、A′、C′的坐标;
(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,求此抛物线的解析式;(a、b、c可用含m的式子表示)
(3)试探究:当m的值改变时,点B关于点O的对称点D是否可能落在(2)中的抛物线上?若能,求出此时m的值.

解:(1)∵四边形ABCO是矩形,点B的坐标为(m,1)(m>0),
∴A(m,0),C(0,1),
∵矩形OA′B′C′由矩形OABC旋转而成,
∴A′(0,m),C′(-1,0);

(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,
∵A(m,0),A′(0,m),C′(-1,0),
,解得
∴此抛物线的解析式为:y=-x2+(m-1)x+m;

(3)存在.
∵点B与点D关于原点对称,B(m,1),
∴点D的坐标为:(-m,-1),
∵抛物线的解析式为:y=-x2+(m-1)x+m;
假设点D(-m,-1)在(2)中的抛物线上,
则y=-(-m)2+(m-1)×(-m)+m=-1,即-2m2+2m+1=0,
∵△=22-4×(-2)×1=12>0,
∴此点在抛物线上,解得m=或m=(舍去).
分析:(1)先根据四边形ABCD是矩形,点B的坐标为(m,1)(m>0),求出点A、C的坐标,再根据图形旋转的性质求出A′、C′的坐标即可;
(2)设过点A、A′、C′的抛物线解析式为y=ax2+bx+c,把A、A′、C′三点的坐标代入即可得出abc的值,进而得出其抛物线的解析式;
(3)根据关于原点对称的点的坐标特点用m表示出D点坐标,把D点坐标代入抛物线的解析式看是否符合即可.
点评:本题考查的是二次函数综合题,此题涉及到图形旋转的性质及用待定系数法求抛物线的解析式,根据图形旋转不变性的性质求出A′、C′的坐标是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

28、在平面直角坐标系中,点P到x轴的距离为8,到y轴的距离为6,且点P在第二象限,则点P坐标为
(-6,8)

查看答案和解析>>

科目:初中数学 来源: 题型:

10、在平面直角坐标系中,点P1(a,-3)与点P2(4,b)关于y轴对称,则a+b=
-7

查看答案和解析>>

科目:初中数学 来源: 题型:

在平面直角坐标系中,有A(2,3)、B(3,2)两点.
(1)请再添加一点C,求出图象经过A、B、C三点的函数关系式.
(2)反思第(1)小问,考虑有没有更简捷的解题策略?请说出你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,开口向下的抛物线与x轴交于A、B两点,D是抛物线的顶点,O为精英家教网坐标原点.A、B两点的横坐标分别是方程x2-4x-12=0的两根,且cos∠DAB=
2
2

(1)求抛物线的函数解析式;
(2)作AC⊥AD,AC交抛物线于点C,求点C的坐标及直线AC的函数解析式;
(3)在(2)的条件下,在x轴上方的抛物线上是否存在一点P,使△APC的面积最大?如果存在,请求出点P的坐标和△APC的最大面积;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、在平面直角坐标系中,把一个图形先绕着原点顺时针旋转的角度为θ,再以原点为位似中心,相似比为k得到一个新的图形,我们把这个过程记为【θ,k】变换.例如,把图中的△ABC先绕着原点O顺时针旋转的角度为90°,再以原点为位似中心,相似比为2得到一个新的图形△A1B1C1,可以把这个过程记为【90°,2】变换.
(1)在图中画出所有符合要求的△A1B1C1
(2)若△OMN的顶点坐标分别为O(0,0)、M(2,4)、N(6,2),把△OMN经过【θ,k】变换后得到△O′M′N′,若点M的对应点M′的坐标为(-1,-2),则θ=
0°(或360°的整数倍)
,k=
2

查看答案和解析>>

同步练习册答案