精英家教网 > 初中数学 > 题目详情
1.阅读理解
    如图1,将△ABC沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿B1A1C的平分线A1B2叠,剪掉重复部分;…;不断重复上述操作,若经过第n次操作,将余下部分沿∠BnAnC的平分线AnBn+1折叠,点Bn与点C刚好重合,则称△ABC是“可折叠三角形”.
    小丽同学打算探索一个三角形是“可折叠三角形”的规律是什么,于是她从简单情况入手,发现了两种特殊情形:
   
情形1:如图2,△ABC中,AB=AC,则△ABC沿顶角∠BAC的平分线AB1折叠点B与点C重合;
情形2:如图3,将△ABC沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合.
分析解答下列问题:
(1)在图3中,△ABC是“可折叠三角形”,∠B与∠C之间存在什么等量关系?∠B=2∠C.
(2)若经过三次折叠发现△ABC是“可折叠三角形”,请探究∠B与∠C(不妨设∠B>∠C)之间的等量关系.并加以证明;
(3)请你猜想:若经过n次折叠发现△ABC是“可折叠三角形”,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C.

分析 (1)在小丽展示的情形二中,如图3,根据三角形的外角定理、折叠的性质推知∠B=2∠C;
(2)根据折叠的性质、根据三角形的外角定理知∠A1A2B2=∠C+∠A2B2C=2∠C;根据四边形的外角定理知∠BAC+2∠B-2C=180°①,根据三角形ABC的内角和定理知∠BAC+∠B+∠C=180°②,由①②可以求得∠B=3∠C;
(3)利用数学归纳法,根据小丽展示的三种情形得出结论:∠B=n∠C.

解答 解:(1)∠B=2∠C;
理由如下:
∵沿∠BAC的平分线AB1折叠,
∴∠B=∠AA1B1
又∵将余下部分沿∠B1A1C的平分线A1B2折叠,此时点B1与点C重合,
∴∠A1B1C=∠C;
∵∠AA1B1=∠C+∠A1B1C(外角定理),
∴∠B=2∠C,
故答案为:∠B=2∠C;
(2)∠B=3∠C;在△ABC中,沿∠BAC的平分线AB1折叠,剪掉重复部分;将余下部分沿∠B1A1C的平分线A1B2折叠,剪掉重复部分,将余下部分沿∠B2A2C的平分线A2B3折叠,点B2与点C重合,
证明如下:∵根据折叠的性质知,∠B=∠AA1B1,∠C=∠A2B2C,∠A1 B1C=∠A1A2B2
∴根据三角形的外角定理知,∠A1A2B2=∠C+∠A2B2C=2∠C;
∵根据四边形的外角定理知,∠BAC+∠B+∠AA1B1-∠A1 B1C=∠BAC+2∠B-2∠C=180°,
根据三角形ABC的内角和定理知,∠BAC+∠B+∠C=180°,
∴∠B=3∠C;
(3)故若经过n次折叠发现△ABC是“可折叠三角形”,则∠B与∠C(不妨设∠B>∠C)之间的等量关系为∠B=n∠C.
故答案为:∠B=n∠C.

点评 本题考查了翻折变换(折叠问题).解答此题时,充分利用了三角形内角和定理、三角形外角定理以及折叠的性质.难度较大.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.A、B两人相距3千米,他们同时朝同一目的地匀速直行,并同时到达目的地,已知A的速度比B快,请根据图象进行判断:
(1)图中的直线l1表示A;
(2)B的速度是3千米/小时.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.如图1,△ABC和△DEF都是等腰直角三角形,其中∠C=∠EDF=90°,点A与点D重合,点E在AB上,AB=4,DE=2.如图2,△ABC保持不动,△DEF沿着线段AB从点A向点B移动,当点D与点B重合时停止移动.设AD=x,△DEF与△ABC重叠部分的面积为y,则y关于x的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A对应点A′落在线段BC上,再打开得到折痕EF.

(1)当A′与B重合时(如图1),EF=5;当折痕EF过点D时(如图2),求线段EF的长?
(2)观察图3和图4,
 ①利用图4,证明四边形AEA′F是菱形;
 ②设BA′=x,当x的取值范围是3≤x≤5时,四边形AEA′F是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在平面直角坐标系xOy中,对于任意三点A、B、C的“矩面积”,给出如下定义:“水平底”a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.
例如:三点坐标分别为A(1,2),B(-3,1),C(2,-2),则“水平底”a=5,“铅垂高”h=4,“矩面积”S=ah=20.
(1)已知点A(1,2),B(-3,1),P(0,t).
①若A、B、P三点的“矩面积”为12,求点P的坐标;
②A、B、P三点的“矩面积”的最小值为4.
(2)已知点E(4,0),F(0,2)M(m,4m),其中m>0.若E、F、M三点的“矩面积”的为8,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.点(-1,4)关于x轴对称的点的坐标为(-1,-4).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.计算:
(1)(-2)2+($\sqrt{3}$-π)0+|1-2sin60°|;   
(2)(x-2)2-(x+1)(x-1).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图所示,在Rt△ABC中,∠C=90°,AB的垂直平分线DE交BC于D,交AB于点E.当∠B=30°时,图中不一定相等的线段有(  )
A.AC=AE=BEB.AD=BDC.AC=BDD.CD=DE

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:$\frac{5x-5y}{3{x}^{2}y}$•$\frac{9x{y}^{2}}{{x}^{2}-{y}^{2}}$.

查看答案和解析>>

同步练习册答案