精英家教网 > 初中数学 > 题目详情
已知函数f(x)=x2+λx,p、q、r为△ABC的三边,且p<q<r,若对所有的正整数p、q、r都满足f(p)<f(q)<f(r),则λ的取值范围是(  )
A、λ>-2B、λ>-3C、λ>-4D、λ>-5
分析:利用f(r)-f(q)>0,得出r2+λr-(q2+λq)=r2-q2+λr-λq=(r+q)(r-q)+λ(r-q),利用p<q<r得出qmin=2,rmin=3,可求λ的范围.
解答:解:∵f(r)-f(q)>0,
r2+λr-(q2+λq)=r2-q2+λr-λq=(r+q)(r-q)+λ(r-q),
=(r-q)(r+q+λ)>0①
又∵q<r,
∴(r+q+λ)>0,λ>-(r+q),
同理,(q-p)(q+p+λ)>0②,
又∵p<q,
∴(q+p+λ)>0,λ>-(p+q),
(r-p)(r+p+λ)>0③
又∵p<r,
∴(r+p+λ)>0,λ>-(r+q)
又∵p<q<r,
∴λ最大为-(p+q),
p、q、r三者均为正整数,p<q<r,且p、q、r为△ABC的三边,即需满足p+q>r,
∴p的最小值应为2(如P为1,q可为2,r可为3,1+2=3,不满足p+q>r的条件),则q的最小值应为3,
∴λ>-5
故选:D.
点评:此题考查了二次函数的增减性(单调性),是一道难度中等的题目.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知函数y=4x-3,当
 
<x<
 
时,函数图象在第四象限.

查看答案和解析>>

科目:初中数学 来源: 题型:

5、已知函数y=(m-3)x-4中,y值随x的增加而减小,则m的取值范围为
m<3

查看答案和解析>>

科目:初中数学 来源: 题型:

11、已知函数y=x+m与y=mx-1,当x=3时,y值相等,那么m的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知函数y=(2k+6)x-k是关于x的一次函数,且y随x的增大而减小,则这个函数的图象经过的象限是  
一、二、四

查看答案和解析>>

科目:初中数学 来源: 题型:

已知函数y=-3(x+4)2-1,当x=
-4
-4
时,函数取得最大值为
-1
-1

查看答案和解析>>

同步练习册答案