分析 根据平行线的判定推出FG∥CD,根据平行线的性质得出∠2=∠DCB,求出∠1=∠DCB,根据平行线的判定推出DE∥BC即可.
解答 (1)证明:∵CD⊥AB,FG⊥AB,
∴∠CDB=90°,∠FGB=90°(垂直定义),
∴FG∥CD(同位角相等,两直线平行),
∴∠2=∠DCB(两直线平行,同位角相等),
∵∠1=∠2(已知),
∴∠1=∠DCB(等量代换),
∴DE∥BC(内错角相等,两直线平行),
∴∠B=∠ADE(两直线平行,同位角相等),
故答案为:垂直定义,同位角相等,两直线平行,FG∥CD,∠1=∠DCB,∠DCB,等量代换,内错角相等,两直线平行;
(2)同位角相等,两直线平行;两直线平行,同位角相等.
点评 本题考查了平行线的性质和判定的应用,能运用平行线的性质和判定进行推理是解此题的关键,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.
科目:初中数学 来源: 题型:选择题
A. | E、F、G | B. | F、G、H | C. | G、H、E | D. | H、E、F |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $\left\{\begin{array}{l}{3x+y=20}\\{x=y}\end{array}\right.$ | B. | $\left\{\begin{array}{l}{x+3y=20}\\{x=y}\end{array}\right.$ | C. | $\left\{\begin{array}{l}{x+y=20}\\{3x=y}\end{array}\right.$ | D. | $\left\{\begin{array}{l}{x+y=20}\\{x=3y}\end{array}\right.$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com