精英家教网 > 初中数学 > 题目详情

如图所示,E是正方形ABCD中AD边上的中点,BD与CE交于点F.请你根据图形判断AF与BE的位置具有什么关系?并给予证明.

AF⊥BE.
证明:∵四边形ABCD是正方形,E是AD边上的中点,
∴AE=DE,AB=CD,∠BAD=∠CDA=90°,
在△BAE和△CDE中

∴△BAE≌△CDE(SAS),
∴∠ABE=∠DCE,
∵四边形ABCD是正方形,
∴AD=DC,∠ADB=∠CDB=45°,
∵在△ADF和△CDF中,

∴△ADF≌△CDF(SAS),
∴∠FAD=∠FCD,
∵∠ABE=∠DCE
∴∠ABE=∠FAD,
∵∠BAD=∠BAF+∠DAF=90°,
∴∠ABE+∠BAF=90°,
∴∠AGB=180°-90°=90°,
∴AF⊥BE.
分析:首先根据正方形的性质证得△BAE≌△CDE,推出∠ABE=∠DCE,再证△ADF≌△CDF,求得∠FAD=∠FCD,推出∠ABE=∠FAD;求出∠ABE+∠BAG=90°;最后在△AGE中根据三角形的内角和是180°求得∠AGE=90°即可.
点评:本题主要考查了正方形的性质及全等三角形的判定与性质.解答本题要充分利用正方形的特殊性质:①四边相等,两两垂直; ②四个内角相等,都是90度; ③对角线相等,相互垂直,且平分一组对角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

23、如图所示,E是正方形ABCD的边CD上一点,将△AED绕点A顺时针旋转90°,得到△AFB,则AE与AF有何关系?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图所示,ABCD是正方形,BE⊥BF,BE=BF,试判断AE与FC的位置关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,E是正方形ABCD的边BC延长线上的点,且BC=CE.
(1)四边形ACED是平行四边形吗?说明理由;
(2)如果AC=
2
,请求出四边形ACED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

23、如图所示,E是正方形ABCD中AD边上的中点,BD与CE交于点F.请你根据图形判断AF与BE的位置具有什么关系?并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,P是正方形ABCD的边CD上一点,∠BAP的角平分线交BC于Q,
试说明AP=DP+BQ.

查看答案和解析>>

同步练习册答案