精英家教网 > 初中数学 > 题目详情

如图,在平行四边形ABCD中,∠BAD的平分线与BC边相交于点E,∠ABC的平分线与AD边相交于点F. 请证明四边形ABEF是菱形.

证明:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠4=∠5,
∵∠ABC的平分线BF,
∴∠3=∠4,
∴∠3=∠5,
∴AF=AB,
∵AD∥BC,
∴∠1=∠AEB,
∵∠BAC的平分线AE,
∴∠1=∠2,
∴∠2=∠AEB,
∴BE=AB,
∴AF=BE,
∵AF∥BE,
∴四边形ABEF是平行四边形,
∵AF=AB,
∴平行四边形ABEF是菱形.
分析:根据平行四边形性质和角平分线性质求出AF=AB,BE=AB,推出AF=BE,AF∥BE,得出平行四边形ABEF,求出∠AOB=90°,根据菱形的判定求出即可.
点评:本题考查了平行四边形的性质和判定,平行线性质,菱形的判定的应用,关键是求出AF=BE和∠AOB=90°,主要考查学生的推理能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

17、如图,在平行四边形ABCD中,EF∥AD,GH∥AB,EF、GH相交于点O,则图中共有
9
个平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,证明:四边形DFBE是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平行四边形ABCD中,∠C=60°,BC=6厘米,DC=7厘米.点M是边AD上一点,且DM:AD=1:3.点E、F分别从A、C同时出发,以1厘米/秒的速度分别沿AB、CB向点B运动(当点F运动到点B时,点E随之停止运动),EM、CD精英家教网的延长线交于点P,FP交AD于点Q.设运动时间为x秒,线段PC的长为y厘米.
(1)求y与x之间函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,PF⊥AD?

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平行四边形ABCD中,AB=2
2
AO=
3
OB=
5
,则下列结论中不正确的是(  )
A、AC⊥BD
B、四边形ABCD是菱形
C、△ABO≌△CBO
D、AC=BD

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•同安区一模)如图,在平行四边形ABCD中,已知∠ODA=90°,AC=10cm,BD=6cm,则AD的长为
4cm
4cm

查看答案和解析>>

同步练习册答案