【题目】计算:
(1)(x2y-2xy+y2)(-4xy);
(2)6mn2(2-mn4)+(-mn3)2;
(3)-4x2·(xy-y2)-3x·(xy2-2x2y);
(4).
【答案】(1)-2x3y2+8x2y2-4xy3;(2)12mn2-m2n6(3)4x3y+x2y2(4)2x2
【解析】
利用单项式乘多项式法则计算得出.
(1)(x2y-2xy+y2)·(-4xy)
=x2y·(-4xy)+(-2xy)·(-4xy)+ y2·(-4xy)
=-2x3y2+8x2y2-4xy3
(2)6mn2(2-mn4)+(-mn3)2
=6mn2×2+6mn2×(-mn4)+m2n6
=12mn2-m2n6
(3)-4x2·(xy-y2)-3x·(xy2-2x2y)
=-4x2·xy+(-4x2)·(-y2)-3x·xy2-3x·(-2x2y)
=-2x3y+4x2y2-3x2y2+6x3y
=4x3y+x2y2
(4)
=x+x2-x-x2
=2x2
科目:初中数学 来源: 题型:
【题目】如图,折线ABC是在某市乘出租车所付车费y(元)与行车里程x(km)之间的函数关系图象.
(1)根据图象,求当x≥3时的函数关系式;
(2)某人乘坐2.5km,应付多少钱?
(3)某人乘坐13km,应付多少钱?
(4)若某人付车费30.8元,出租车行驶了多少路程?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点(A在B点左侧),与y轴交于点C,对称轴为直线x=,OA=2,OD平分∠BOC交抛物线于点D(点D在第一象限);
(1)求抛物线的解析式和点D的坐标;
(2)点M是抛物线上的动点,在x轴上存在一点N,使得A、D、M、N四个点为顶点的四边形是平行四边形,求出点M的坐标;
(3)在抛物线的对称轴上,是否存在一点P,使得△BPD的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图①,正方形ABCD,点E、点F分别在AB和AD上,且AE=AF.此时,线段BE、DF的数量关系是 ,位置关系是 .请直接写出结论.
(2)如图②,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当0°<α<90°时,连接BE、DF,此时(1)中的结论是否成立,如果成立,请证明;如果不成立,请说明理由。
(3)如图③,等腰直角三角形FAE绕直角顶点A顺时针旋转∠α,当90°<α<180°时,连接BD、DE、EF、FB,得到四边形BDEF,则顺次连接四边形BDEF各边中点所组成的四边形是什么特殊四边形?请直接写出结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明从家去体育场锻炼,同时,妈妈从体育场以50米/分的速度回家,小明到体育场后发现要下雨,立即返回,追上妈妈后,小明以250米/分的速度回家取伞,立即又以250米/分的速度折回接妈妈,并一同回家.如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图像.
(注:小明和妈妈始终在同一条笔直的公路上行走,图像上A、C、D三点在一条直线上)
(1)求线段BC的函数表达式;
(2)求点D坐标;
(3)当 x的值为 时,小明与妈妈相距1 500米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形纸片ABCD中,AB=4,BC=8,将纸片沿EF折叠,使点C与点A重合,则下列结论错误的是( )
A. AF=AE B. △ABE≌△AGF C. EF= D. AF=EF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个大于1的正整数n进行如下操作:
① 将n拆分为两个正整数a、b的和,并计算乘积a×b
② 对于正整数a、b分别重复此操作,得到另外两个乘积
③ 重复上述过程,直至不能再拆分为止(即拆分到正整数1)
当n=6时,所有的乘积的和为_________,当n=100时,所有的乘积的和为_________
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知一次函数的图象经过点A(2,0),B(0,4).
(1)求此函数的解析式;
(2)若点P为此一次函数图象上一动点,且△POA的面积为2,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场同时购进甲、乙两种商品共200件,其进价和售价如表,
商品名称 | 甲 | 乙 |
进价(元/件) | 80 | 100 |
售价(元/件) | 160 | 240 |
设其中甲种商品购进x件,该商场售完这200件商品的总利润为y元.
(1)求y与x的函数关系式;
(2)该商品计划最多投入18000元用于购买这两种商品,则至少要购进多少件甲商品?若售完这些商品,则商场可获得的最大利润是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com