【小题1】背景 :在图1中,已知线段AB,CD。其中点分别是E,F。
①若A(-1,0),B(3,0),则E点的坐标为________;
②若C(-2,2),D(-2,-1),则F点的坐标为_________;
【小题2】探究: 在图2中,已知线段AB的端点坐标A(a,b),B(c,d),求出图中AB中点D的坐标(用含a,b,c,d的代数式表示),并给出求解过程;
归纳: 无论线段AB处于直角坐标系中的哪个位置,当其端点坐标为A(a,b),B(c,d),AB中点为D(x,y)时,x=______,y=_________(不必证明)。
运用: 在图3中,一次函数y=x-2与反比例函数的图像交点为A,B。
①求出交点A,B的坐标;
②若以A、O、B、P为顶点的四边形是平行四边形,请利用上面的结论求出顶点P的坐标。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2011-2012学年浙江省杭州市萧山瓜沥片八年级12月月考数学卷 题型:解答题
问题背景:在△ABC中,AB、BC、AC三边的长分别为、、,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC三个顶点都在小正方形的顶点处),如图①所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.
【小题1】(1)请你将△ABC的面积直接填写在横线上.____ ▲_______
【小题2】(2)我们把上述求△ABC面积的方法叫做构图法.若△ABC三边的长分别为a、2a、a(a>0),请利用图②的正方形网格(每个小正方形的边长为a)画出相应的△ABC,并求出它的面积.
【小题3】(3)若△ABC三边的长分别为、、2(m>0,n>0,且m≠n),试运用构图法求出这三角形的面积.
查看答案和解析>>
科目:初中数学 来源:2012届浙江省金华市浦江五中九年级下学期月考数学卷 题型:解答题
题背景:如图1,四边形ABCD和CEFG都是正方形,B,C,E在同一条直线上,连接BG,DE.
问题探究:
【小题1】(1)①如图1所示,当G在CD边上时,猜想线段BG、DE的数量关系及所在直线的位置关系.(不要求证明)
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度α,得到如图2,如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,请选择图2或图3证明你的判断.
类比研究:
【小题2】(2)若将原题中的“正方形”改为“矩形”(如图所示),且=k(其中k>0),请写出 线段BG、DE的数量关系及位置关系.请选择图5或图6证明你的判断(仅证数量关系).
拓展应用:
【小题3】(3)在(1)中图2中,连接DG、BE,若AB=3,EF=2,求BE2+DG2的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com