【题目】一个圆柱体形零件,削去了占底面圆的四分之一部分的柱体(如图),现已画出了主视图与俯视图.
(1)请只用直尺和圆规,将此零件的左视图画在规定的位置(不必写作法,只须保留作图痕迹);
(2)若此零件底面圆的半径r=2cm,高h=3cm,求此零件的表面积.
【答案】(1)见解析;(2)两个底面积: 6πcm2;侧面积: (9π+12)cm2;表面积:(15π+12)cm2.
【解析】
(1)由削去了占底面圆的四分之一部分的柱体易得主视图和左视图相同,可先画一条线段等于主视图中大长方形的长,然后分别做两个端点的垂线及线段的垂直平分线,在两端点的垂线上分别截取主视图的高连接即可得到几何体的左视图;
(2)此零件的表面积=两个底面积+侧面积,把相关数值代入即可求解.
解:(1)左视图与主视图形状相同,有作垂线(直角)的痕迹(作法不唯一).
(2)两个底面积:2πr2×=6π(cm2);
侧面积:(2πr×+2r)×3=(3π+4)×3=9π+12(cm2);
表面积:15π+12(cm2).
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB=3,BC=4,将对角线AC绕对角线交点O旋转,分别交边AD、BC于点E、F,点P是边DC上的一个动点,且保持DP=AE,连接PE、PF,设AE=x(0<x<3).
(1)填空:PC= ,FC= ;(用含x的代数式表示)
(2)求△PEF面积的最小值;
(3)在运动过程中,PE⊥PF是否成立?若成立,求出x的值;若不成立,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.
(1)求此抛物线的解析式;
(2)求C、D两点坐标及△BCD的面积;
(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,的直径,点是延长线上的一点,过点作的切线,切点为,连接.
(1)若,求的长;
(2)若点在的延长线上运动,的平分线交于点,你认为的大小是否发生变化?若变化,请说明理由;若不变化,求出的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.
请根据以上信息,解答下列问题:
(1)将统计图补充完整;
(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用总时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ACB=90°,点D、E分别在边BC、AC上,AC=3AE,∠CDE=45°(如图),△DCE沿直线DE翻折,翻折后的点C落在△ABC内部的点F,直线AF与边BC相交于点G,如果BG=AE,那么tanB=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA、PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C、D,若⊙O的半径为r,△PCD的周长等于3r,则tan∠APB的值是( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】顺次连接平面直角坐标系xOy中,任意的三个点P,Q,G.如果∠PQG=90°,那么称∠PQG为“黄金角”.
已知:点A(0,3),B(2,3),C(3,4),D(4,3).
(1)在A,B,C,D四个点中能够围成“黄金角”的点是 ;
(2)当时,直线y=kx+3(k≠0)与以OP为直径的圆交于点Q(点Q与点O,P不重合),当∠OQP是“黄金角”时,求k的取值范围;
(3)当P(t,0)时,以OP为直径的圆与△BCD的任一边交于点Q,当∠OQP是“黄金角”时,求t的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,∠ACB=90°,OC=2BO,AC=6,点B的坐标为(1,0),抛物线y=﹣x2+bx+c经过A、B两点.
(1)求点A的坐标;
(2)求抛物线的解析式;
(3)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.
①求点P的坐标;
②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com