精英家教网 > 初中数学 > 题目详情
阅读理解:对于任意正实数a、b,∵≥0, ∴≥0,
,只有当a=b时,等号成立.
结论:在(a、b均为正实数)中,若ab为定值p,则a+b≥,只有当a=b时,a+b有最小值
根据上述内容,回答下列问题:
若m>0,只有当m=    时,    
思考验证:如图1,AB为半圆O的直径,C为半圆上任意一点(与点A、B不重合),过点C作CD⊥AB,垂足为D,AD=a,DB=b.

试根据图形验证,并指出等号成立时的条件.
探索应用:如图2,已知A(-3,0),B(0,-4),P为双曲线(x>0)上的任意一点,过点P作PC⊥x轴于点C,PD⊥y轴于点D.求四边形ABCD面积的最小值,并说明此时四边形ABCD的形状.
解:阅读理解:m=  1 (填不扣分),最小值为;   
思考验证:∵AB是的直径,∴AC⊥BC,又∵CD⊥AB,∴∠CAD=∠BCD=90°-∠B,
∴Rt△CAD∽Rt△BCD,   CD2=AD·DB,    ∴CD=       
若点D与O不重合,连OC,在Rt△OCD中,∵OC>CD, ∴
若点D与O重合时,OC=CD,∴  
综上所述,,当CD等于半径时,等号成立.
探索应用:设, 则,
,化简得: 
,只有当
∴S≥2×6+12=24,
∴S四边形ABCD有最小值24.     
此时,P(3,4),C(3,0),D(0,4),AB=BC=CD=DA=5,∴四边形ABCD是菱形.
阅读理解:读懂题意即可得到结果;
思考验证:先证Rt△CAD∽Rt△BCD,根据相似三角形的对应边乘比例即可表示出CD,分两种情况讨论:
若点D与O不重合,连OC,在Rt△OCD中,;若点D与O重合,
综上所述,,当CD等于半径时,等号成立.
探索应用:设出点P的坐标,即可表示出CA、DB,从而得到四边形ABCD面积的函数关系式,根据函数关系式的特征即可得到结果。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

小明用一根铁丝围成了一个面积为25cm2的正方形,小颖对小明说:“我用这根铁丝可以围个面积也是25cm2的圆,且铁丝还有剩余”。问小颖能成功吗?若能,请估计可剩多少厘米的铁丝?(误差小于1cm)若不能,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,等边△ABC的周长为6π,半径是1的⊙O从与AB相切于点D的位置
出发,在△ABC外部按顺时针方向沿三角形滚动,又回到与AB相切于点D的位置,则⊙O自转了:【   】
A.2周B.3周C.4周D.5周

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1和⊙O2的半径分别为2和5,圆心距OlO2=3,则这两圆的位置关系是(  )
A.相离B.外切C.相交D.内切

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,形如量角器的半圆O的直径DE=12cm,形如三角板的△ABC中,∠ACB=90°,∠ABC=
30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,点DE始终在直线BC上.设运动时间为t (s),当t=0s时,半圆O在△ABC的左侧,OC=8cm.

(1)当t为何值时,△ABC的一边所在的直线与半圆O所在的圆相切?    
(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,如果半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分,求重叠部分的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,以为圆心的两个同心圆中,大圆的弦是小圆的切线.若大圆半径为,小圆半径为,则弦的长为        

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

(1)善于思考的小迪发现:半径为,圆心在原点的圆(如图1),如果固定直径,把圆内的所有与轴平行的弦都压缩到原来的倍,就得到一种新的图形椭圆(如图2),她受祖冲之“割圆术”的启发,采用“化整为零,积零为整”“化曲为直,以直代曲”的方法.正确地求出了椭圆的面积,她求得的结果为     

(2)(本小题为选做题,做对另加3分,但全卷满分不超过150分)小迪把图2的椭圆绕轴旋转一周得到一个“鸡蛋型”的椭球.已知半径为的球的体积为,则此椭球的体积为      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知O的半径OA=2,C为半径OB的中点,若∠AOB=90°,则图中阴影部分的面积为

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图1是一种带有黑白双色、边长是20cm的正方形装饰瓷砖,用这样的四块瓷砖可以拼成如图2的图案.已知制作图1这样的瓷砖,其黑、白两部分所用材料的成本分别

查看答案和解析>>

同步练习册答案