精英家教网 > 初中数学 > 题目详情

若二次函数y=x2+bx+c经过(1,0),且图象关于直线x=2对称,求二次函数的解析式.

解:∵抛物线对称轴是直线x=2且经过点(1,0),
由抛物线的对称性可知:抛物线还经过点(3,0),
设抛物线的解析式为y=a(x-x1)(x-x2)(a≠0),
∵a=1,
∴抛物线的解析式为:y=(x-1)(x-3),
即y=x2-4x+3.
分析:因为对称轴是直线x=2,所以得到点(1,0)的对称点是(3,0),因此利用交点式y=a(x-x1)(x-x2),求出解析式.
点评:本题考查了用待定系数法求函数解析式的方法,注意选择若知道与x轴的交点坐标,采用交点式比较简单.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知直线y=
1
2
x
和y=-x+m,二次函数y=x2+px+q图象的顶点为M.
(1)若M恰在直线y=
1
2
x
与y=-x+m的交点处,试证明:无论m取何实数值,二次函数y=x2+px+q的图象与直线y=-x+m总有两个不同的交点;
(2)在(1)的条件下,若直线y=-x+m过点D(0,-3),求二次函数y=x2+px+q的表达式;
(3)在(2)的条件下,若二次函数y=x2+px+q的图象与y轴交于点C,与x轴的左交点为A,试在抛物线的对称轴上求点P,使得△PAC为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

若二次函数y=x2-2x-8的图象交x轴于A、B两点(A点在B点的左边),交y轴于点C,
(1)写出A、B、C三点的坐标;
(2)试求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

若二次函数y=x2-mx+6配方后为y=(x-2)2+k,则m,k的值分别为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

若二次函数y=x2+(k2-1)x+k-1与x轴的两个交点关于原点对称,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大庆)如图,平面直角坐标系中,以点C(2,
3
)为圆心,以2为半径的圆与x轴交于A,B两点.
(1)求A,B两点的坐标;
(2)若二次函数y=x2+bx+c的图象经过点A,B,试确定此二次函数的解析式.

查看答案和解析>>

同步练习册答案