精英家教网 > 初中数学 > 题目详情
(2010•芜湖)如图,直角梯形ABCD中,∠ADC=90°,AD∥BC,点E在BC上,点F在AC上,∠DFC=∠AEB.
(1)求证:△ADF∽△CAE;
(2)当AD=8,DC=6,点E、F分别是BC、AC的中点时,求直角梯形ABCD的面积?

【答案】分析:(1)已知∠DFC=∠AEB,则它们的补角也相等;再由梯形的平行线得出的内错角相等,即可判定两个三角形相似.
(2)欲求梯形的面积,首先须求出BC的长,那么求出CE的长是解答此题的关键;可在Rt△ACD中,根据勾股定理求出AC的长,进而可求出AF的长;然后根据(1)的相似三角形得出的对应成比例线段,求出EC的长,由此得解.
解答:(1)证明:在梯形ABCD中,AD∥BC,
∴∠DAF=∠ACE;
∵∠DFC=∠AEB,∴∠DFA=∠AEC;
∴△ADF∽△CAE;

(2)解:由(1)知:△ADF∽△CAE,
=
∵AD=8,DC=6,∠ADC=90°,
∴AC==10;
又F是AC的中点,∴AF=AC=5;
=,解得CE=
∵E是BC的中点,
∴BC=2CE=
∴直角梯形ABCD的面积=×(+8)×6=
点评:此题主要考查了直角梯形的性质以及相似三角形的判定和性质.
练习册系列答案
相关习题

科目:初中数学 来源:2010年全国中考数学试题汇编《二次函数》(07)(解析版) 题型:解答题

(2010•芜湖)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-3,1)、C(-3,0)、O(0,0).将此矩形沿着过E(-,1)、F(-,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.
(1)求折痕所在直线EF的解析式;
(2)一抛物线经过B、E、B′三点,求此二次函数解析式;
(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:2010年安徽省芜湖市中考数学试卷(解析版) 题型:解答题

(2010•芜湖)如图,在平面直角坐标系中放置一矩形ABCO,其顶点为A(0,1)、B(-3,1)、C(-3,0)、O(0,0).将此矩形沿着过E(-,1)、F(-,0)的直线EF向右下方翻折,B、C的对应点分别为B′、C′.
(1)求折痕所在直线EF的解析式;
(2)一抛物线经过B、E、B′三点,求此二次函数解析式;
(3)能否在直线EF上求一点P,使得△PBC周长最小?如能,求出点P的坐标;若不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:2011年浙江省杭州市义桥实验学校中考数学模拟试卷(解析版) 题型:填空题

(2010•芜湖)如图,光源P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,已知AB=2m,CD=6m,点P到CD的距离是2.7m,那么AB与CD间的距离是   

查看答案和解析>>

科目:初中数学 来源:2011年湖北省武汉六中中考数学模拟试卷(3月份)(解析版) 题型:选择题

(2010•芜湖)如图所示,在圆⊙O内有折线OABC,其中OA=8,AB=12,∠A=∠B=60°,则BC的长为( )

A.19
B.16
C.18
D.20

查看答案和解析>>

同步练习册答案