【题目】如图,在平面直角坐标系中,A点的坐标为(a,6),AB⊥x轴于点B,=,反比例函数y=的图象的一支分别交AO、AB于点C、D.延长AO交反比例函数的图象的另一支于点E.已知点D的纵坐标为.
(1)求反比例函数的解析式及点E的坐标;
(2)连接BC,求S△CEB.
(3)若在x轴上的有两点M(m,0)N(-m,0).
①以E、M、C、N为顶点的四边形能否为矩形?如果能求出m的值,如果不能说明理由.
②若将直线OA绕O点旋转,仍与y=交于C、E,能否构成以E、M、C、N为顶点的四边形为菱形,如果能求出m的值,如果不能说明理由.
【答案】(1)反比例函数的解析式为:y=;E(-4,-3);(2)24;(3)①m=5或-5.②以E、M、C、N为顶点的四边形不能为菱形.
【解析】
(1)根据已知条件可求A、D的坐标,用待定系数法即求出反比例函数解析式;由点A坐标求直线OA的解析式,把直线OA与反比例函数解析式联立方程组,即求出交点E;
(2)把△CEB分成△COB与△EOB,以OB为公共底,点C和点E纵坐标的绝对值为高即求出三角形面积;
(3)先由OC=OE,OM=ON得四边形EMCN为平行四边形.①若为矩形,则对角线相等,即MN=CE,易求出m的值;②若为菱形,则对角线互相垂直,但CE不与x轴垂直,矛盾,故不能成为菱形.
本题考查了反比例函数的图象与性质,反比例函数与一次函数的综合运用,平行四边形、矩形、菱形的判定.
(1)∵A点的坐标为(a,6),AB⊥x轴于B,
∴AB=6,
∵,
∴OB=8,
∴A(8,6),D(8,),
∵点D在反比例函数y=的图象上,
∴k=8×=12,
∴反比例函数的解析式为:y=,
设直线OA的解析式为:y=bx,
∴8b=6,解得:b=,
∴直线OA的解析式为:y=x,
解得:,,
∴E(-4,-3);
(2)由(1)可知C(4,3),E(-4,-3),B(8,0),
∴S△CEB=S△COB+S△EOB==OB(yC+|yE|)=×8×(3+3)=24;
(3)①以E、M、C、N为顶点的四边形能为矩形,
∵M(m,0),N(-m,0),
∴OM=ON,
∵OC=OE,
∴四边形EMCN是平行四边形,
当MN=CE=2OC=2×=10时,EMCN为矩形,
∴OM=ON=5,
∴m=5或-5;
②∵CE所在直线OA不可能与x轴垂直,即CE不能与MN垂直,
∴以E、M、C、N为顶点的四边形不能为菱形.
科目:初中数学 来源: 题型:
【题目】已知二次函数y=﹣x2+3x﹣
(1)用配方法求出函数图象的顶点坐标和对称轴方程;
(2)用描点法在如图所示的平面直角坐标系中画出该函数的图象;
(3)根据图象,直接写出y的值小于0时,x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义为一次函数y=px+q的特征数.
(1)若特征数是的一次函数为正比例函数,求m的值;
(2)已知抛物线y=(x+n)(x-2)与x轴交于点A、B,其中n>0,点A在点B的左侧,与y轴交于点C,且△OAC的面积为4,O为原点,求图象过A、C两点的一次函数的特征数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数的图象上有一动点,连接并延长交图象的另一支于点,在第二象限内有一点,满足,当点运动时,点始终在函数的图象上运动,,则______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.
(1)求证:四边形ADCF是菱形;
(3)若AC=5,AB=6,求菱形ADCF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠BAC=90°,将△ABC绕点A顺时针旋转90°后得到△AB′C′(点B的对应点是点B′,点C的对应点是点C′),连接CC′.若∠CC′B′=32°,则∠B的大小是( )
A.32°B.64°C.77°D.87°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( ).
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕其右下角的顶点按顺时针方向旋转90°至图①位置,继续绕右下角的顶点按顺时针方向旋转90°至图②位置,以此类推,这样连续旋转2017次.若AB=4,AD=3,则顶点A在整个旋转过程中所经过的路径总长为( )
A. 2017π B. 2034π C. 3024π D. 3026π
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com