精英家教网 > 初中数学 > 题目详情

【题目】某文具店经营某种品牌的文具盒,购进时的单价是30元,根据统计调查:在一段时间内,销售单价是40元时,文具盒销售量是600个,而销售单价每涨2元,就会少售出20个文具盒.

1)不妨设该种品牌文具盒的销售单价为元(),请你分别用的代数式来表示销售量个和销售该品牌文具盒获得利润元,并把结果填写在表格中:

销售单价(元)

销售量(个)

__________________

销售文具盒获得利润(元)

____________________

2)在(1)问条件下,若该文具店获得了6000元销售利润,求该文具盒销售单价应定为多少元?

3)在(1)问条件下,若厂家规定该品牌文具盒销售单价不低于44元,且文具店要完成不少于380个的销售目标,求该文具店销售该品牌文具盒获得的最大利润是多少元?

【答案】(1) ;(290;(312160

【解析】

1)根据销售单价每涨2元,就会少售出20个文具盒,可用的代数式表示销售量;根据利润=单个利润×销售量来用x表示

2)令,解方程舍去不合题意的值即可;

3)根据销售单价不低于44元,且文具店要完成不少于380个的销售目标列出一元一次不等式组,求出x的取值范围,然后根据二次函数的性质求最大利润即可.

解:(1)由题意得:

2)依题意得,

解得,

答:该文具店获得了6000元销售利润,求该文具盒销售单价应定为90

3)依题意得,

解得:,且为整数,

∴抛物线开口向下且对称轴为

∴当时,的增大而增大,

∴当时,利润最大为12160元,

答:该文具店销售该品牌文具盒获得的最大利润是12160.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+x轴交于点A(﹣50),B10),顶点为D,与y轴交于点C

1)求抛物线的表达式及D点坐标;

2)在直线AC上方的抛物线上是否存在点E,使得∠ECA2CAB,如果存在这样的点E,求出ACE面积,如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛一枚均匀硬币正面朝上的概率为,下列说法错误的是  

A. 连续抛一枚均匀硬币2次必有1次正面朝上

B. 连续抛一枚均匀硬币10次都可能正面朝上

C. 大量反复抛一枚均匀硬币,平均每100次出现正面朝上50次

D. 通过抛一枚均匀硬币确定谁先发球的比赛规则是公平的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是二次函数y=ax2+bx+ca≠0)的图象的一部分,给出下列命题:

abc<0;②b>2a;③a+b+c=0;④8a+c>0;⑤ax2+bx+c=0的两根分别为﹣31.

其中正确的命题有(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的盒子中,装有2个白球和1个红球,这些球除颜色外其余都相同.

(1)你同意下列说法吗?请说明理由.

①搅匀后从中任意摸出一个球,不是白球就是红球,因此摸出白球和摸出红球这两个事件是等可能的.

②如果将摸出的第一个球放回搅匀后再摸出第二个球,两次摸球就可能出现3种结果,即都是红球都是白球一红一白”.这三个事件发生的概率相等.

(2)搅匀后从中任意摸出一个球,要使摸出红球的概率为,应如何添加红球?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的顶点B在抛物线yx2的第一象限部分,若B点的横坐标与纵坐标之和等于6,则正方形OABC的面积为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:对于给定的两个函数,任取自变量x的一个值,x<0,它们对应的函数值互为相反数;x0,它们对应的函数值相等,我们称这样的两个函数互为相关函数。例如:一次函数y=x1,它们的相关函数为y= .

(1)已知点A(5,8)在一次函数y=ax3的相关函数的图象上,求a的值;

(2)已知二次函数y=x+4x .

①当点B(m, )在这个函数的相关函数的图象上时,求m的值;

②当3x3,求函数y=x+4x的相关函数的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的直径AB的长为2,点C在圆周上,CAB=30°,点D是圆上一动点,DEAB交CA的延长线于点E,连接CD,交AB于点F.

(1)如图1,当ACD=45°时,求证:DE是O的切线;

(2)如图2,当点F是CD的中点时,求CDE的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=﹣x2+x+6x轴相交AB两点,与y轴相交于点C

1)若点E为线段BC上一动点,过点Ex轴的垂线与抛物线交于点P,垂足为F,当PE2EF取得最大值时,在抛物线y的对称轴上找点M,在x轴上找点N,使得PM+MN+NB的和最小,若存在,求出该最小值及点N的坐标;若不存在,请说明理由.

2)在(1)的条件下,若点P′为点P关于x轴的对称点,将抛物线y沿射线BP′的方向平移得到新的抛物线y′,当y′经过点A时停止平移,将△BCN沿CN边翻折,点B的对应点为点B′,BCx轴交于点K,若抛物线y′的对称轴上有点R,在平画内有点S,是否存在点RS使得以KB′、RS为顶点的四边形是菱形,若存在,直接写出点S的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案