【题目】如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m,求四边形ABCD的面积.
【答案】解:如图,连接BD.
在Rt△ABD中,∵∠A=90°,AD=4,AB=3,
∴BD= = =5,
∵BD2+BC2=52+122=169,DC2=132=169,
∴BD2+BC2=CD2 ,
∴△BDC是直角三角形,
∴S△DBC= BDBC= ×5×12=30,S△ABD= ADAB= ×3×4=6,
∴四边形ABCD的面积=S△BDC+S△ADB=36
【解析】如图,连接BD.首先利用勾股定理求出BD,再利用勾股定理的逆定理证明△BDC是直角三角形,分别求出△ABD,△DBC的面积即可解决问题.
【考点精析】本题主要考查了勾股定理的概念和勾股定理的逆定理的相关知识点,需要掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;如果三角形的三边长a、b、c有下面关系:a2+b2=c2,那么这个三角形是直角三角形才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】将平行四边形ABCD旋转到平行四边形A′B′C′D′的位置,下列结论错误的是( )
A. AB=A′B′ B. AB∥A′B′ C. ∠A=∠A′ D. △ABC≌△A′B′C′
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F.
(1) 求证:AC是⊙O的切线;
(2) 已知AB=10,BC=6,求⊙O的半径r.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.
(1)求证:∠ADB=∠CDB;
(2)若∠ADC=90°,求证:四边形MPND是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若顺次连接四边形ABCD各边中点所得四边形是矩形,则四边形ABCD必然是( )
A.菱形
B.对角线相互垂直的四边形
C.正方形
D.对角线相等的四边形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com