分析 (1)延长EA到G,使得AG=BE,连接DG,根据四边形ABCD是平行四边形,推出AB=CD,AB∥CD,AD=BC,求出∠DAG=90°=∠GAD,根据SAS证△ABE≌△DAG,推出DG=AB=CD,∠1=∠2,求出∠AFD=∠GDF,推出DG=GF=AF+AG即可;
(2)延长EA到G,使得$\frac{BE}{AG}$=$\frac{a}{b}$,连接DG,根据两边对应成比例,且夹角相等,两三角形相似,推出△ABE∽△DGA,推出∠1=∠2,DG=AB,代入即可求出答案.
解答 解:(1)证明:延长EA到G,使得AG=BE,连接DG,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,AD=BC,
∵AE⊥BC于点E,
∴∠AEB=∠AEC=90°,
∴∠AEB=∠DAG=90°,
∴∠DAG=90°,
在△ABE和△DGA中
$\left\{\begin{array}{l}{BE=GA}\\{∠GAD=∠BEA}\\{AE=AD}\end{array}\right.$,
∴△ABE≌△DGA,
∴∠1=∠2,DG=AB,∠B=∠G,
∵四边形ABCD是平行四边形,
∴∠B=∠ADC,
∵∠B+∠1=∠ADC+∠2=90°,∠3=∠4,
∴∠GDF=90°-∠4,∠GFD=90°-∠3,
∴∠GDF=∠GFD,
∴GF=GD=AB=CD,
∵GF=AF+AG=AF+BE,
∴CD=AF+BE;
(2)bCD=aAF+bBE
理由是:延长EA到G,使得$\frac{BE}{AG}$=$\frac{a}{b}$,连接DG,
即AG=$\frac{b}{a}$BE,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,AD=BC,
∵AE⊥BC于点E,
∴∠AEB=∠AEC=90°,
∴∠AEB=∠DAG=90°,
∴∠DAG=90°,
即∠AEB=∠GAD=90°,
∵$\frac{AE}{AD}$=$\frac{BE}{AG}$=$\frac{a}{b}$,
∴△ABE∽△DGA,
∴∠1=∠2,$\frac{AB}{DG}$=$\frac{a}{b}$,
∴∠GFD=90°-∠3,
∵DF平分∠ADC,
∴∠3=∠4,
∴∠GDF=∠2+∠3=∠1+∠4=180°-∠FAD-∠3=90°-∠3.
∴∠GDF=∠GFD,
∴DG=GF,
∵$\frac{AB}{DG}$=$\frac{a}{b}$,AB=CD(已证),
∴bCD=aDG=a($\frac{b}{a}$BE+AF),
即 bCD=aAF+bBE.
点评 本题综合考查了全等三角形的性质和判定,相似三角形的性质和判定,角平分线定义,平行线的性质,平行四边形的性质等知识点的运用,本题综合性比较强,有一定的难度,但主要考查学生的类比推理的思想,主要检查学生能否找出解题思路,注意:解题思路的相似之处啊.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $-4\frac{2}{3}>-4.7$ | B. | $-\frac{12}{23}<-\frac{6}{11}$ | C. | -0.2<-0.22 | D. | $-0.01<-\frac{1}{100}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 0.2cm 0.3m 0.4cm 0.2cm | B. | 1cm 2cm 3cm 4cm | ||
C. | 4cm 6cm 8cm 3cm | D. | $\sqrt{2}$cm $\sqrt{6}$cm $\sqrt{8}$cm $\sqrt{7}$cm |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com