精英家教网 > 初中数学 > 题目详情

在如图的直角坐标系中,已知点A(2,0)、B(0,-4),将线段AB绕点A按逆时针方向旋转90°至AC.

(1)求点C的坐标;
(2)若抛物线y=-x2+ax+4经过点C.
①求抛物线的解析式;
②在抛物线上是否存在点P(点C除外)使△ABP是以AB为直角边的等腰直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

C的坐标为(3,﹣1);
(2)①抛物线的解析式为y=﹣x2+x+2;
②存在点P,△ABP是以AB为直角边的等腰直角三角形,符合条件的点有P1(﹣1,1),P2(﹣2,﹣1)两点.

解析试题分析:(1)过点C作CD垂直于x轴,由线段AB绕点A按逆时针方向旋转90°至AC,根据旋转的旋转得到AB=AC,且∠BAC为直角,可得∠OAB与∠CAD互余,由∠AOB为直角,可得∠OAB与∠ABO互余,根据同角的余角相等可得一对角相等,再加上一对直角相等,利用ASA可证明三角形ACD与三角形AOB全等,根据全等三角形的对应边相等可得AD=OB,CD=OA,由A和B的坐标及位置特点求出OA及OB的长,可得出OD及CD的长,根据C在第四象限得出C的坐标;
(2)①由已知的抛物线经过点C,把第一问求出C的坐标代入抛物线解析式,列出关于a的方程,求出方程的解得到a的值,确定出抛物线的解析式;
②假设存在点P使△ABP是以AB为直角边的等腰直角三角形,分三种情况考虑:(i)A为直角顶点,过A作AP1垂直于AB,且AP1=AB,过P1作P1M垂直于x轴,如图所示,根据一对对顶角相等,一对直角相等,AB=AP1,利用AAS可证明三角形AP1M与三角形ACD全等,得出AP1与P1M的长,再由P1为第二象限的点,得出此时P1的坐标,代入抛物线解析式中检验满足;(ii)当B为直角顶点,过B作BP2垂直于BA,且BP2=BA,过P2作P2N垂直于y轴,如图所示,同理证明三角形BP2N与三角形AOB全等,得出P2N与BN的长,由P2为第三象限的点,写出P2的坐标,代入抛物线解析式中检验满足;(iii)当B为直角顶点,过B作BP3垂直于BA,且BP3=BA,如图所示,过P3作P3H垂直于y轴,同理可证明三角形P3BH全等于三角形AOB,可得出P3H与BH的长,由P3为第四象限的点,写出P3的坐标,代入抛物线解析式检验,不满足,综上,得到所有满足题意的P的坐标.
试题解析:(1)过C作CD⊥x轴,垂足为D,

∵BA⊥AC,∴∠OAB+∠CAD=90°,
又∠AOB=90°,∴∠OAB+∠OBA=90°,
∴∠CAD=∠OBA,又AB=AC,∠AOB=∠ADC=90°,
∴△AOB≌△CDA,又A(1,0),B(0,﹣2),
∴OA=CD=1,OB=AD=2,
∴OD=OA+AD=3,又C为第四象限的点,
∴C的坐标为(3,﹣1);
(2)①∵抛物线y=﹣x2+ax+2经过点C,且C(3,﹣1),
∴把C的坐标代入得:﹣1=﹣+3a+2,解得:a=
则抛物线的解析式为y=﹣x2+x+2;
②存在点P,△ABP是以AB为直角边的等腰直角三角形,
(i)若以AB为直角边,点A为直角顶点,
则延长CA至点P1使得P1A=CA,得到等腰直角三角形ABP1,过点P1作P1M⊥x轴,如图所示,

∵AP1=CA,∠MAP1=∠CAD,∠P1MA=∠CDA=90°,
∴△AMP1≌△ADC,
∴AM=AD=2,P1M=CD=1,
∴P1(﹣1,1),经检验点P1在抛物线y=﹣x2+x+2上;
(ii)若以AB为直角边,点B为直角顶点,则过点B作BP2⊥BA,且使得BP2=AB,
得到等腰直角三角形ABP2,过点P2作P2N⊥y轴,如图,

同理可证△BP2N≌△ABO,
∴NP2=OB=2,BN=OA=1,
∴P2(﹣2,﹣1),经检验P2(﹣2,﹣1)也在抛物线y=﹣x2+x+2上;
(iii)若以AB为直角边,点B为直角顶点,则过点B作BP3⊥BA,且使得BP3=AB,
得到等腰直角三角形ABP3,过点P3作P3H⊥y轴,如图,

同理可证△BP3H≌△BAO,
∴HP3=OB=2,BH=OA=1,
∴P3(2,﹣3),经检验P3(2,﹣3)不在抛物线y=﹣x2+x+2上;
则符合条件的点有P1(﹣1,1),P2(﹣2,﹣1)两点.
考点:1.二次函数综合题2.点的坐标3.等腰直角三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

在直角坐标系xOy中,已知点P是反比例函数y=(x>0)图象上一个动点,以P为圆心的圆始终与y轴相切,设切点为A.
(1)如图1,⊙P运动到与x轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与x轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的?若存在,试求出所有满足条件的M点的坐标;若不存在,试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图1,在菱形ABCD中,对角线AC、BD相交于点O,AC=8,BD=6.现有两动点P、Q分别从A、C两点同时出发,点P以每秒1个单位长的速度由点A向点D做匀速运动,点Q沿折线CB—BA向点A做匀速运动.
(1)点P将要运行路径AD的长度为     ;点Q将要运行的路径折线CB—BA的长度为        .
(2)当点Q在BA边上运动时,若点Q的速度为每秒2个单位长,设运动时间为t秒.
①求△APQ的面积S关于t的函数关系式,并求自变量t的取范围;
②求当t为何值时,S有最大值,最大值是多少?
(3)如图2,若点Q的速度为每秒a个单位长(a≤),当t =4秒时:
①此时点Q是在边CB上,还是在边BA上呢?
②△APQ是等腰三角形,请求出a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

某商家独家销售具有地方特色的某种商品,每件进价为40元.经过市场调查,一周的销售量y件与销售单价x(x≥50)元/件的关系如下表:

销售单价x
(元/件)

55
60
70
75

一周的销售量y
(件)

450
400
300
250

(1)直接写出y与x的函数关系式:                           
(2)设一周的销售利润为S元,请求出S与x的函数关系式,并确定当销售单价在什么范围内变化时,一周的销售利润随着销售单价的增大而增大?
(3)雅安地震牵动亿万人民的心,商家决定将商品一周的销售利润全部寄往灾区,在商家购进该商品的贷款不超过10000元情况下,请你求出该商家最大捐款数额是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=x2-2x+c的顶点A在直线l:y=x-5上.

(1)求抛物线顶点A的坐标;
(2)设抛物线与y轴交于点B,与x轴交于点C、D(C点在D点的左侧),试判断△ABD的形状.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在平面直角坐标系xOy中,抛物线的解析式是y=x2+1,点C的坐标为(-4,0),平行四边形OABC的顶点A,B在抛物线上,AB与y轴交于点M,已知点Q(x,y)在抛物线上,点P(t,0)在x轴上.

(1)写出点M的坐标;
(2)当四边形CMQP是以MQ,PC为腰的梯形时;
①求t关于x的函数解析式和自变量x的取值范围;
②当梯形CMQP的两底的长度之比为1∶2时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,O为坐标原点,点A、B的坐标分别为(8,0)、(0,6).动点Q从点O、动点P从点A同时出发,分别沿着OA方向、AB方向均以1个单位长度/秒的速度匀速运动,运动时间为t(秒)(0<t≤5).以P为圆心,PA长为半径的⊙P与AB、OA的另一个交点分别为C、D,连接CD、QC.

(1)求当t为何值时,点Q与点D重合?
(2)设△QCD的面积为S,试求S与t之间的函数关系式,并求S的最大值;
(3)若⊙P与线段QC只有一个交点,请直接写出t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.

(1)求这个二次函数的表达式.
(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.
(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,已知点坐标为(2,4),直线x=2与轴相交于点,连结,抛物线y=x从点沿方向平移,与直线x=2交于点,顶点点时停止移动.

(1)求线段所在直线的函数解析式;
(2)设抛物线顶点的横坐标为,
①用的代数式表示点的坐标;
②当为何值时,线段最短;
(3)当线段最短时,相应的抛物线上是否存在点,使△的面积与△的面积相等,若存在,请求出点的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案