精英家教网 > 初中数学 > 题目详情
6.如图,在直角坐标系xOy中,已知正三角形ABC的边长为2,点A从点O开始沿着x轴的正方向移动,点B在∠xOy的平分线上移动.则点C到原点的最大距离是(  )
A.1+$\sqrt{2}$+$\sqrt{3}$B.$\sqrt{2}$+$\sqrt{6}$C.2+$\sqrt{3}$D.1+2$\sqrt{2}$

分析 当OC垂直平分线段AB时,线段OC最长,设OC与AB的交点为F,在OF上取一点E,使得OE=EA,分别求出CF、EF、OE即可.

解答 解:如图,当OC垂直平分线段AB时,线段OC最长.
设OC与AB的交点为F,在OF上取一点E,使得OE=EA,
∵△ABC为等边三角形,边长为2,OC⊥AB
∴CF=$\frac{\sqrt{3}}{2}$AC=$\sqrt{3}$,AF=BF=1,
∵∠BOC=∠AOC=22.5°,
∴∠EOA=∠EAO=22.5°,
∴∠FEA=∠FAE=45°,
∴AF=EF=1,AE=$\sqrt{2}$,
∴OC=OE+EF+CF=1+$\sqrt{2}$+$\sqrt{3}$.
故选A.

点评 本题考查坐标与图形的性质、勾股定理、等边三角形的性质等知识,解题的关键是确定直线OC是AB的垂直平分线,学会添加辅助线构造直角三角形解决问题,属于中考常考题型.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.如图,将矩形纸片ABCD置于直角坐标系中,点A(4,0),点B(0,3),点D(异于点B、C)为边BC上动点,过点O、D折叠纸片,得点B′和折痕OD.过点D再次折叠纸片,使点C落在直线DB′上,得点C′和折痕DE,连接OE,设BD=t.
(1)当t=1时,求点E的坐标;
(2)设S四边形OECB=s,用含t的式子表示s(要求写出t的取值范围);
(3)当OE取最小值时,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,直线l1解析式为y=x+2,且与坐标轴分别交于A、B两点,与双曲线交于点P(-1,1).点M是双曲线在第四象限上的一点,过点M的直线l2与双曲线只有一个公共点,并与坐标轴分别交于点C、点D,当四边形ABCD的面积取最小值时,则点M的坐标为(  )
A.(1,-1)B.(2,-$\frac{1}{2}$)C.(3,-$\frac{1}{3}$)D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,锐角△ABC分别以A、B为直角顶点,向△ABC外作等腰直角三角形ACE和等腰直角三角形BCF,再分别过点E、F作边AB所在直线的垂线,垂足为M,N.
求证:EM+FN=AB.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.生活中有许多数,初看时总觉得它并不大,但实际上却大得令人惊讶,有的却是看去一个不起眼的小数,也让我们做出一个离事实相去甚远的结论.请看:
材料一:假设某宾馆楼房共有30层,一楼的收费是每晚2美元,二楼是每晚4美元,三楼是每晚8美元,…,即每高一层收费就翻一番,如果你身上有一百万美元要住一晚,你一定认为住第30层没问题吧?
我们算一算住30楼需要的钱数是:
230=1073741824美元.
你看竟然需要10亿多美元.
材料二:假如用一根比地球赤道长1米的铁丝将地球赤道围起来,你会认为铁丝与地球赤道之间的间隙应该小得都看不出吧?可事实上是这样吗?
让我们算一算铁丝与地球赤道之间的间隙为(有C表示地球赤道的长):$\frac{C+1}{2π}-\frac{C}{2π}=\frac{1}{2π}≈0.16(米)$
这么大的间隙都可以钻过去一只小猫了.
请同学们想一想由上面两个材料可以得到什么样的一个结论?并结合所学知识写一篇数学帮助我们认识生活的小作文.(题目自拟,字数控制在200-400字).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知函数y=-2x+3的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M.在X轴上有一点P(a,0)(其中a>1),过点P作x轴的垂线,分别交函数y=x和y=-2x+3的图象于点C、D.若CD=3,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.已知某抛物线经过(-1,0),(3,0),(0,6)三点,求该抛物线解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.如图,矩形ABCD的边AB有一点E,AE:EB=3:2,DA边上有点F,且EF=18,将矩形沿EF对折后,点A落在边BC上的点G,则AB为(  )
A.3$\sqrt{6}$B.5$\sqrt{6}$C.5$\sqrt{3}$D.6$\sqrt{2}$

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.如图,在锐角θ内,有五个相邻外切的不等圆,它们都与θ角的边相切,且半径分别为r1、r2、r3、r4、r5.若最小的半径r1=1,最大的半径r5=81.则sinθ=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

同步练习册答案