精英家教网 > 初中数学 > 题目详情
7.$\frac{{a}^{2}-1}{a+1}$÷($\frac{1}{a+2}$-1),其中a=$\frac{1}{3}$.

分析 先化简,再代入求值即可.

解答 解:原式=$\frac{(a+1)(a-1)}{a+1}$÷$\frac{1-a-2}{a+2}$
=-$\frac{(a-1)(a+2)}{a+1}$,
当a=$\frac{1}{3}$时,原式=-$\frac{(\frac{1}{3}-1)(\frac{1}{3}+2)}{\frac{1}{3}+1}$=-$\frac{7}{6}$.

点评 本题考查了分式的化简求值,掌握分式的通分和约分是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

17.在有理数的原有运算法则中,我们补充定义一种新运算“★”如下:a★b=(a+b)(a-b),例如:5★3=(5+3)×(5-3)=8×2=16,下面给出了关于这种新运算的几个结论:①3★(-2)=5;②a★b=b★a;③若b=0,则a★b=a2;④若a★b=0,则a=b.其中正确结论的有①③;(只填序号)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.直角三角形有一个重要的性质:在Rt△ABC中,∠C=90°,∠A=30°,则AB:BC:AC=2:1:$\sqrt{3}$,运用该性质可解决下面问题.
已知等边△ABC的边长为2$\sqrt{3}$.
(1)如图1,过等边△ABC的顶点A,B,C依次作AB、BC、CA的垂线围成△MNG.
①求证:△MNG是等边三角形;②求MN的长.
(2)在等边△ABC内取一点,过点O分别作OD⊥AB,OE⊥BC,OF⊥BC垂足分别为点D、E、F.
①如图2,若点O是△ABC的三条高的交点,我们可利用三角形面积公式或等边三角形性质得到两个猜想(不必证明);
猜想1:OD+OE+OF的值为3;
猜想2:AD+BE+CF的值为3$\sqrt{3}$
②如图3,若点O是等边△ABC内任意一点,则①中的两个猜想是否仍然成立?如果成立,请给予证明;如果不成立,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在同一坐标系中画出一次函数y1=2x+2和二次函数y2=-$\frac{1}{2}$x2+$\frac{3}{2}$x+3的图象.
(1)求它们的交点坐标;
(2)当x为何值时,y1>y2
(3)当x为何值时,y1与y2随x的增大而增大.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,在△ABC中,AH⊥BC于H,BC=12,AH=8,D、E分别为AB、AC上的点,G、F是BC上的两点,四边形DEFG是矩形,设EF=X.
(1)用x表示DE的长;
(2)当矩形DEFG的面积最大时,求EF的长,并出矩形DEFG的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在平面直角坐标系xOy中,直线y=x+3与坐标轴分别交于A,B两点,过A、B两点的抛物线为y=-x2+bx+c.
(1)求抛物线的解析式
(2)直接写出该抛物线顶点M的坐标,求出线段MB的长度.
(3)若P(x,y)是该抛物线上的一个动点,是否存在这样的点P,使得它到线段AB两端的距离相等,即使得PA=PB,若存在,试求出所有符合条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.计算:
(1)3xy2÷$\frac{6{y}^{2}}{x}$;
(2)$\frac{x-1}{x+2}$÷$\frac{{x}^{2}-2x+1}{{x}^{2}-4}$+$\frac{1}{x-1}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图所示的图形中各有几个角?

图(1)中有3个角;图(2)中有6个角;图(3)中有10个角
思考:
如果从一点引n(n≥2)条射线,则一共有$\frac{(n+1)(n+2)}{2}$个角.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.分解因式:
(1)2m(a-b)-6n(b-a)
(2)(a-2b)2+8ab.

查看答案和解析>>

同步练习册答案