精英家教网 > 初中数学 > 题目详情
20.下列各数:3.141592,-$\sqrt{3}$,0.16,$\sqrt{1{0}^{-2}}$,-π,2.010010001,…(相邻两个1之间0的个数逐次加1),$\frac{22}{7}$,$\root{3}{5}$,0.2$\stackrel{•}{3}$,$\sqrt{8}$,是无理数的有(  )个.
A.2B.3C.4D.5

分析 无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.

解答 解:-$\sqrt{3}$,-π,$\root{3}{5}$,$\sqrt{8}$是无理数.
故选:C.

点评 此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.等腰三角形的判定定理:已知△ABC中,∠B=∠C,求证:AB=AC
课堂情景还原:
小明说:“作高线AD,可证明△ABD≌△ACD,从而得到AB=AC”
小红说:“作角平分线AD,可证明△ABD≌△ACD,从而得到AB=AC”
小刚说:“作中线AD,证明△ABD≌△ACD”
很多同学说不能证明△ABD≌△ACD,因为“SSA”不能作为判定两个三角形全等的依据.
小聪是这样分析的:“中线AD把△ABC面积平分,即△ABD与△ACD面积相等,要证明AB=AC,只需证明这两边上的高相等…”
(1)小明与小红证明全等的判定方法是:AAS或有两角和其中一角所对的边对应相等的两个三角形全等(简写理由)
(2)根据小聪的提示,请你完成等腰三角形的判定定理证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:
①$\sqrt{(-5)^{2}}$-$\root{3}{-27}$
②($\sqrt{3}$)2+|1-$\sqrt{3}$|+($\frac{1}{2}$)0
③2$\sqrt{12}$×$\frac{1}{4}$$\sqrt{3}$÷5$\sqrt{2}$
④$\sqrt{\frac{b}{a}}$÷$\sqrt{ab}$×$\sqrt{\frac{{a}^{3}}{b}}$(a>0,b>0)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,在△ABC中,AB=AC=5,D是BC的中点,现在以D为圆心,以DC为半径作⊙D,求:
(1)BC=8时,点A与⊙D的位置关系;
(2)BC=6时,点A与⊙D的位置关系;
(3)BC=5$\sqrt{2}$时,点A与⊙D的位置关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.在平面直角坐标系中,O为坐标原点,抛物线y=a(x-m)(x-3)与x轴从左到右依次交于点A、B,与y轴交于点C.
(1)如图1,求点B的坐标;
(2)如图2,连接AC、BC,点P在第一象限的抛物线上,其横坐标为t,AP交y轴于点D,若CD=2t,∠ACB=45°,求a、m的值;
(3)如图3,在(2)的条件下,点Q在x轴的正半轴上,PA=PQ,点E在第二象限内,其横坐标与点A的横坐标相等,QE⊥AP,若∠PEA=135°,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,已知梯形ABCD中,AD∥BC,DC⊥BC,AB=10,tanB=$\frac{4}{3}$,⊙O1以AB为直径,⊙O2以CD为直径,且⊙O1与⊙O2相切,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,已知正方形ABCD中,E、F分别是AD、DC边上的点,且AE=DF,△ADF可看作是由△BAE绕着某一点旋转而来的.
(1)请画出旋转中心,并简要说明理由;
(2)设AF与BE交于点K,连接CK,若AE=2,AB=6,求CK的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.先化简,再求值:($\frac{{x}^{2}-2x+4}{x-1}$+2-x)÷$\frac{{x}^{2}+4x+4}{1-x}$,其中x是不等式组$\left\{\begin{array}{l}{3-2x≤1}\\{\frac{x-1}{2}-1<0}\end{array}\right.$的整数解.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.对于实数x,规定[x]表示不大于x的最大整数,例如[1.2]=1,[-2.5]=-3,若[x-2]=-1,则x的取值范围为(  )
A.0<x≤1B.0≤x<1C.1<x≤2D.1≤x<2

查看答案和解析>>

同步练习册答案