精英家教网 > 初中数学 > 题目详情
如图所示,在梯形ABCD中,BC∥AD,DE∥AB,DE=DC,∠A=100°,则∠B=    ,∠C=    ,∠ADC=    ,∠EDC=   
【答案】分析:先根据DE∥AB,得出∠DEC=∠B=80°,结合DE=DC,可得出∠C=80°,继而可得出∠ADC及∠EDC的度数.
解答:解:∵DE∥AB,
∴∠DEC=∠B=80°,
∵DE=DC,
∴∠C=∠DEC=80°,
又∵AD∥BC,
∴∠ADC=180°-∠C=100°,
在△DEC中,∠EDC=180°-80°-80°=20°.
故答案为:80°、80°、100°、20°.
点评:本题考查了三角形的内角和定理、等腰三角形的性质及平行线的性质,属于基础题,关键是平行线性质的运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知如图所示,在梯形ABCD中,AD∥BC,AB=AD=DC=8,∠B=60°,连接AC.
(1)求cos∠ACB的值;
(2)若E、F分别是AB、DC的中点,连接EF,求线段EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C?D?A?B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,AD=AB=6,BC=14,点M是线段BC上一定点,且MC=8.动点P从C点出发沿C→D→A→B的路线运动,运动到点B停止.在点P的运动过程中,使△PMC为等腰三角形的点P有几个?并求出相应等腰三角形的腰长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在梯形ABCD中,已知AB∥CD,AD⊥DB,AD=DC=CB,AB=4,DO垂直于AB.则腰长是
 
.若P是梯形的对称轴L上的点,那么使△PDB为等腰三角形的点有
 
个.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在梯形ABCD中,AB∥DC,EF是梯形的中位线,AC交EF于G,BD交EF于H,以下说法错误的是(  )

查看答案和解析>>

同步练习册答案